

Motor-driven and process metering pumps for all capacity ranges

Issued by:

ProMinent GmbH Im Schuhmachergewann 5-11 69123 Heidelberg Germany Phone +49 6221 842–0 info@prominent.com www.prominent.com

Technical changes reserved.

All previous catalogues and price lists are superseded with the release of this product catalogue. You can view our general terms and conditions on our homepage.

Heidelberg, January 2017

Product Catalogue Volume 3

Motor Driven and Process Metering Pumps

Performance by design

Industrial applications using fluid metering technology are many and varied. They are often critical and each industry has its own specific requirements. You will find the right product here, regardless of whether you require a reliable metering pump for a routine or more complex application.

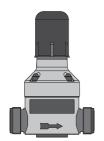
Chapter 1 offers virtually all-purpose motor-driven diaphragm metering pumps for use in the low-pressure range up to a capacity of 1,000 l/h, to ensure that your processes operate safely to meet maximum requirements. Advanced technology for demanding applications.

Chapter 2 focuses on heavy-duty pumps for extreme applications. Process metering pumps for hazardous production processes in the petrochemical industry or in the oil and gas industry, tailored specifically for high-end applications. They have proved themselves able to meter, even under very high pressure and at extreme temperatures - even toxic, corrosive and flammable liquids.

Ready for you. Anytime, anywhere.

ProMinent is close to hand no matter where you are: 55 dedicated sales, production and service companies guarantee service and availability in close proximity to our customers. For many years this has meant a local presence for our customers in over 100 countries.

Our sales team will be happy to be of assistance should you have any questions about metering technology or water treatment. You will find the contact details of your local contact at www.prominent.com/en/locations.


Pump Guide

You can also find information online. The ProMinent pump selection guide is available on our website. Just enter the required pump capacity and back pressure, and the Pump Guide will show you a list of suitable metering pumps. This is the quick and easy way to track down precisely the right pump for your needs.

www.pump-guide.com

New Products: Motor driven and Process Pumps

Extension of back pressure valves DHV-U with larger nominal widths

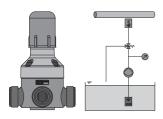
Application of PPE/PPB/PCE/PCB:

20 $^{\circ}\text{C}$ - max. operating pressure 10 bar

Application of PVT/SST:

30 °C - max. operating pressure 10 bar For more information see page \rightarrow 1-53

Back pressure valves DHV-U in physiologically safe design (FDA)


Application of PPE/PPB/PCE/PCB

20 °C - max. operating pressure 10 bar

Application of PVT/SST

30 °C - max. operating pressure 10 bar For more information see page \rightarrow 1-51

New relief valves type DHV-UR, DHV-UR (FDA), DHV-UR-M

The universal relief valves type DHV-UR are, like all valves in the DHV-U product range, are continuously adjustable plunger diaphragm valves with an internal flow. In the event of impermissible overpressure, the internal plunger diaphragm opens the second output power, the bleeder output. Can be installed at any location in the pipework system. Very low pressure losses when the relief valve is closed owing to its virtually free pipe cross-section. Simple spare parts management, the wear parts (diaphragms, plunger seal, connector set seal) correspond to the DHV-U valve product range.

Other designs with plugs for manometer installation type DHV-UR M are available as well as in a physiologically safe design in accordance with FDA regulations.

For more information see page → 1-73

Contents

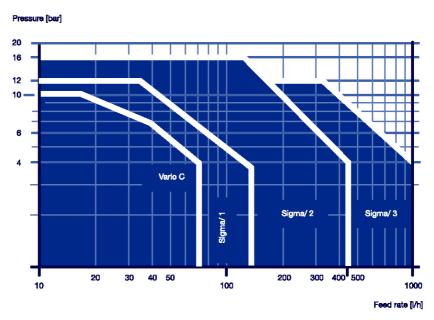
Moto	or-drive	n and Process Pumps for all Capacity Ran	ges page	е
1	Motor	Driven Metering Pumps	1-	1
-	1.0	Overview of Motor Driven Metering Pumps	1-	
	1.0	1.0.1 Selection Guide	1-	-
		1.0.2 Installation Options	1-	
	1.1	Motor Driven Metering Pump Vario C	i 1-	
		1.1.1 Motor Driven Metering Pump Vario C	1-	
		1.1.2 Identity Code Ordering System for VAMc	1-	
		1.1.3 Spare Parts	1-	
	1.2	Motor Driven Metering Pump Sigma/ 1 (Basic Type)	1-	
		1.2.1 Motor Driven Metering Pump Sigma/ 1 (Basic 7		
		1.2.2 Spare Parts	1-1	
	1.3	Motor Driven Metering Pump Sigma/ 1 (Control Type)	1-1	
		1.3.1 Motor Driven Metering Pump Sigma/ 1 (Contro		
		1.3.2 Spare Parts	1-1	
	1.4	Motor Driven Metering Pump Sigma/ 2 (Basic Type)	1-2	
		1.4.1 Motor Driven Metering Pump Sigma/ 2 (Basic 7)		
		1.4.2 Spare Parts	1-2	
	1.5	Motor Driven Metering Pump Sigma/ 2 (Control Type)	1-2	
	1.0	1.5.1 Motor Driven Metering Pump Sigma/ 2 (Contro		
		1.5.2 Spare Parts	1-3	
	1.6	Motor Driven Metering Pump Sigma/ 3 (Basic Type)	1-3	
	1.0	1.6.1 Motor Driven Metering Pump Sigma/ 3 (Basic 1)		
		1.6.2 Spare Parts	1-3 1-3	
	1.7	Motor Driven Metering Pump Sigma/ 3 (Control Type)	1-3	
	1.7	1.7.1 Motor Driven Metering Pump Sigma/ 3 (Contro		
		1.7.2 Spare Parts	1-4	
	1.8	Hydraulic/Mechanical Accessories	1-4	
	1.0	1.8.1 Foot Valves for Motor Driven Metering Pumps	1-4	
		1.8.2 Injection Valves for Motor Driven Metering Pun		
		1.8.3 Back Pressure Valves / Relief Valves for	ips 1-4	13
		Motor Driven Metering Pumps	1-5	:3
		Relief valve type DHV-UR M configured for ma		
		1.8.4 Suction Lances, Suction Assemblies and Level S		
		Motor Driven Metering Pumps	1-6	34
		1.8.5 Fittings	1-6	37
		1.8.6 Pulsation Damper	1-6	36
		1.8.7 Accumulators	1-7	
		1.8.8 Accumulators Without Diaphragm	1-7	2
		1.8.9 Connectors and Seals for Motor Driven Meterin		
		1.8.10 Metering Pump Wall Mounting Bracket	1-8	
	1.9	Electrical Accessories	1-8	
		1.9.1 Speed Controllers	1-8	
		1.9.2 General Electrical Accessories	1-8	
	1.10	Special Accessories	1-8	
		1.10.1 Custom Accessories	1-8	
	1.11	Application Examples	1-9	
		1.11.1 Metering of Highly Viscous Substances	1-9	
		1.11.2 Mixing Two Reagents	1-9	
		1.11.3 Safe and Reliable Chemical Metering with Redu		
_	_			
2	Proce	ess Metering Pumps	2-	
	2.0	Overview of Process Metering Pumps	2-	
		2.0.1 Selection Guide	2-	
		2.0.2 Installation Applications	2-	-2
	2.1	Diaphragm Metering Pump ProMinent EXtronic®	2-	-3
		2.1.1 Diaphragm Metering Pump ProMinent EXtronic	c® 2-	-3
		2.1.2 Identity Code Ordering System for EXBb	2-	-5
		2.1.3 Spare Parts	2-	-6
		2.1.4 Ex-Proof Ancillary Equipment	2-	2_

Contents

lotor	-driver	n and P	rocess Pumps for all Capacity Ranges p	age
	2.2	Diaphra	gm Metering Pump Makro TZ	2-11
		2.2.1	Diaphragm Metering Pump Makro TZ	2-11
		2.2.2	Identity Code Ordering System for TZMb	2-13
		2.2.3	Spare Parts	2-14
	2.3		gm Metering Pump Makro/ 5	2-17
		2.3.1	Diaphragm Metering Pump Makro/ 5	2-17
		2.3.2	Identity Code Ordering System M5Ma	2-19
		2.3.3	Spare Parts	2-20
	2.4	Hydrauli	ic Diaphragm Metering Pump Hydro/ 2	2-21
		2.4.1	Hydraulic Diaphragm Metering Pump Hydro/ 2	2-21
		2.4.2	Identity Code Ordering System HP2a	2-23
		2.4.3	Spare Parts	2-24
	2.5	-	c Diaphragm Metering Pump Hydro/ 3	2-25
		2.5.1	Hydraulic Diaphragm Metering Pump Hydro/ 3	2-25
		2.5.2	Identity Code Ordering System HP3a	2-27
		2.5.3	Spare Parts	2-28
	2.6		c Diaphragm Metering Pump Hydro/ 4	2-29
		2.6.1	Hydraulic Diaphragm Metering Pump Hydro/ 4	2-29
		2.6.2	Identity Code Ordering System HP4a	2-31
		2.6.3	Spare Parts	2-32
	2.7	-	c Diaphragm Metering Pump Makro/ 5	2-34
		2.7.1	Hydraulic Diaphragm Metering Pump Makro/ 5	2-34
		2.7.2	Identity Code Ordering System for M5Ha	2-37
		2.7.3	Spare Parts	2-39
	2.8	-	c Diaphragm Metering Pump Orlita® Evolution 1	2-40
		2.8.1	Hydraulic Diaphragm Metering Pump Orlita® Evolution 1	2-40
	2.9	-	c Diaphragm Metering Pump Orlita® Evolution 2	2-42
		2.9.1	Hydraulic Diaphragm Metering Pump Orlita® Evolution 2	2-42
	2.10		ic Diaphragm Metering Pump Orlita® Evolution 3	2-44
		2.10.1	Hydraulic Diaphragm Metering Pump Orlita® Evolution 3	2-44
	2.11		ic Diaphragm Metering Pump Orlita® Evolution 4	2-46
	0.40	2.11.1	Hydraulic Diaphragm Metering Pump Orlita® Evolution 4	2-46
	2.12	-	c Diaphragm Metering Pumps Orlita® MF	2-48
		2.12.1	Hydraulic Diaphragm Metering Pump Orlita® MF	2-48
		2.12.2	Orlita® MFS 18 (MF1a) Hydraulic Diaphragm Metering Pumps	2-52
		2.12.3	Orlita® MFS 35 (MF2a) Hydraulic Diaphragm Metering Pumps	2-54
		2.12.4	Orlita® MFS 80 (MF3a) Hydraulic Diaphragm Metering Pumps	2-56
		2.12.5	Orlita® MFS 180 (MF4a) Hydraulic Diaphragm Metering Pumps	
		2.12.6	Orlita® MFS 600 (MF5b) Hydraulic Diaphragm Metering Pumps	2-60
	0.10		Orlita® MFS 1400 (MF6a) Hydraulic Diaphragm Metering Pumps	
	2.13		ic Diaphragm Metering Pump Orlita® MH	2-64
		2.13.1	Hydraulic Diaphragm Metering Pumps Orlita® MH with Metal Diaphragm	2-64
	2.14	Hydrauli	ic Metal Diaphragm Metering Pump	2 0-
	2.17	High-pre	essure Orlita® MHHP	2-66
			Hydraulic Metal Diaphragm Metering Pump	
			High-pressure Orlita® MHHP	2-66
	2.15	Plunger	Metering Pump Sigma/ 2 (Basic Type)	2-67
		2.15.1	Plunger Metering Pump Sigma/ 2 (Basic Type)	2-67
		2.15.2	Identity Code Ordering System for SBKa	2-70
		2.15.3	Spare Parts Kits	2-71
	2.16	Plunger	Metering Pump Sigma/ 2 (Control Type)	2-72
		2.16.1	Plunger Metering Pump Sigma/ 2 (Control Type)	2-72
		2.16.2	Identity Code Ordering System for SCKa	2-74
		2.16.3	Spare Parts Kits	2-74
	2.17	Plunger	Metering Pump Meta	2-75
		2.17.1	Plunger Metering Pump Meta	2-75
		2.17.2	Identity Code Ordering System for MTKa	2-77
		2.17.3	Spare Parts	2-78

Contents

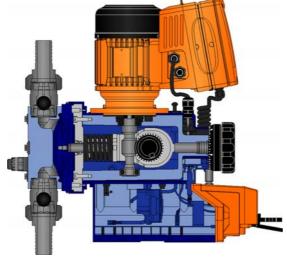
lotor-drive	n and Process Pumps for all Capacity Ranges	page
0.10	D. M D. M	
2.18	Plunger Metering Pump Makro TZ	2-79
	2.18.1 Plunger Metering Pump Makro TZ	2-79
	2.18.2 Identity Code Ordering System TZKa	2-82
	2.18.3 Spare Parts Kits	2-83
2.19	Plunger Metering Pump Makro/ 5	2-84
	2.19.1 Plunger Metering Pump Makro/ 5	2-84
	2.19.2 Identity Code Ordering System for M5Ka	2-87
	2.19.3 Spare Parts Kits	2-89
2.20	Plunger Metering Pump Orlita® PS	2-90
	2.20.1 Plunger Metering Pump Orlita® PS	2-90
2.21	Plunger Metering Pump Orlita® DR	2-93
	2.21.1 Plunger Metering Pump Orlita® DR	2-93
2.22	Diaphragm Process Pump Zentriplex	2-95
	2.22.1 Diaphragm Process Pump Zentriplex	2-95
2.23	Hydraulic/Mechanical Accessories	2-97
	2.23.1 Return/Pressure Relief Valve, Spring-loaded	2-97
	2.23.2 Safety Valve	2-98
	2.23.3 Pulsation Damper	2-99


Data Required for Specification of Metering Pump and Accessories

ProMinent® Chemical Resistance List

1.0 Overview of Motor Driven Metering Pumps

1.0.1 Selection Guide



pk_2_diagramm

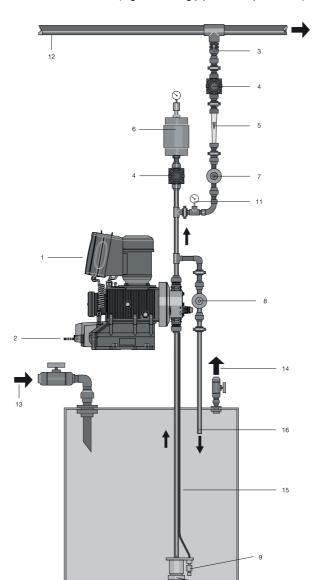
ProMinent offers an extensive range of metering pumps with a capacity rating of up to 1,000 l/h. All oscillating positive-displacement pumps feature a leak-free, hermetically sealed metering chamber and an identical operating structure.

Applications

- General: Chemical metering up to 1,000 l/h
- Potable water treatment: Metering of disinfectants
- Cooling circuits: Metering of disinfectants
- Waste water treatment: Metering of flocculants
- Paper industry: Metering of additives
- Plastics production: Metering of additives
- Textile industry: Metering of dyeing additives
- Electroplating: Metering of acids/lyes
- Automotive industry: Metering of cleaning agents
- Food industry: Metering of solids, concentrates, CIP cleaning agents
- Pool & Wellness: Metering of disinfectants

Sigma-bCGHR

Sigma multi-layer safety diaphragm (1: Diaphragm rupture warning system)


Overview of Motor Driven Metering Pumps

1.0.2

Installation Options

The smooth operation of metering systems depends not only on choosing the correct model for your application, but also on the correct installation of application-specific accessories. The drawing below illustrates a variety of accessory components, not all of which will be required for every plant, but which give an overview of what can be achieved in practical terms.

We are always at your service, to help you choose the right accessories for your processing application, and to provide any additional technical advice (e.g. calculating pipework requirements).

- Metering pump
- Activation and control option
- Shut-off valve
- Pulsation damper Back pressure valve
- Relief valve in the bypass line
- 10 Foot valve 11 Manometer 12 System 13 Filling

- 13 Filling 14 Bleed valve 15 Suction line
- 16 Bypass

pk_2_000_1_1AK

Motor Driven Metering Pump Vario C

Motor Driven Metering Pump Vario C

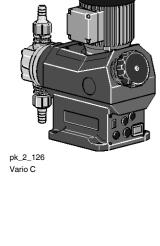
The basic pump for simple applications

Capacity range 8 - 76 l/h, 10 - 4 bar

The motor-driven metering pump Vario C delivers a high level of process quality for continuous metering within simple metering tasks. It can be used, for example, in the metering of additives or flocculants in chemical metering.

With 4 gear reduction ratios, 2 dosing head sizes and 2 dosing head materials, the Vario C motor-driven metering pump is well adapted to basic metering tasks. It is available with a three-phase or single-phase AC motor. Its pump capacity is adjusted via the stroke length, in 1% increments, with a self-locking rotary

Your benefits


- Excellent suction capacity, gentle metering stroke and consistently precise metering
- Excellent process quality: Metering reproducibility is better than ± 2% within the stroke length adjustment range of 30 to 100%
- Flexible adjustment of the pump capacity by means of the stroke length in 1% increments
- Fibreglass-reinforced plastic housing
- Good adaptation to the specific application, thanks to 4 different gear reduction ratios and 2 sizes of liquid ends in 2 material versions
- Power end optionally available with three-phase or single-phase AC motor
- Customised designs are available on request

Technical Details

- Stroke length: 3 mm
- Stroke length adjustment range: 0 100 %
- Stroke length adjustment: manually by means of self-locking rotary dial
- Metering reproducibility is better than ±2% in the 30 100% stroke length adjustment range under defined conditions and with correct installation
- Wetted materials: PVDF, stainless steel 1.4571/1.4404
- DEVELOPAN® diaphragm (single diaphragm with PTFE)
- Motor: Three-phase AC motor (0.07 KW, 230/400 V, 50/60 Hz) or single-phase AC motor (0.06 kW, 230 V 50 Hz or 115 V 60 Hz)
- Degree of protection: IP 55
- Fibreglass-reinforced plastic housing
- Provide suitable overload protection in all motor-driven metering pumps during installation for safety

Field of application

- Chemical metering in potable water, cooling and waste water circuits
- Metering of additives, flocculants etc.

Motor Driven Metering Pumps

Motor Driven Metering Pump Vario C

Technical Data

Type VAMc	With 1500 rpm motor at 50 Hz			With 1800 rpm motor at 60 Hz			Suction lift	Perm. pre-pressure suction side	Connection, suction/ discharge side	
			y rate at pressure	Max. stroke rate		elivery rate at back pressure	Max. stroke rate			
	bar	l/h	ml/ stroke	Strokes/ min	psi	I/h/gph (US)	Strokes/ min	m WC	bar	G-DN
10008	10	8	4	38	145	9.6/2.5	45	7	2.8	3/4–10
10016	10	16	4	77	145	19.2/5.0	92	7	2.8	3/4–10
07026	7	26	4	120	100	31.2/8.2	144	7	2.8	3/4-10
07042	7	42	4	192	100	50.4/13.3	230	7	2.8	3/4–10
07012	7	12	5	38	100	14.4/3.8	45	6	1.7	3/4–10
07024	7	24	5	77	100	28.8/7.6	92	6	1.7	3/4–10
04039	4	40	5	120	58	48.0/12.6	144	6	1.7	3/4–10
04063	4	64	5	192	58	76.8/20.2	230	6	1.7	3/4–10

The shipping weight of all pump types is 6/7.2 kg (PVDF/SS)

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure connector	Seals	Valve balls	Valve seat
PVT	PVDF	PVDF	PTFE	Ceramic	PTFE
SST	Stainless steel material no. 1.4404	Stainless steel material no. 1.4581	PTFE	Stainless steel material no. 1.4404	PTFE

Motor Data

Identity code characteristic		Voltage supply		Remarks
S	3 ph, IP 55	220-240 V/380-420 V	50 Hz	0.07 kW
		250-280 V/440-480 V	60 Hz	0.07 kW
M	1 ph AC, IP 55	230 V ±5%	50/60 Hz	0.06 kW
N	1 ph AC, IP 55	115 V ±5%	60 Hz	0.06 kW

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IE3 standard in compliance with the Ecodesign Directive 2009/125/EC.

Motor Driven Metering Pump Vario C

1.1.2

Identity Code Ordering System for VAMc

Vario Diaphragm Metering Pump

VAMc	Type*									
		bar	l/h							
	10008	10	8							
	10016	10	16							
	07026	7	26							
	07042	7	42							
	07012	7	12							
	07024	7	24							
	04039	4	40							
	04063	4	64							
		Materi	al Liqui	id end						
		PVT		PTFE se	eal					
		SST	stainle	ss steel,	PTFE s	eal				
			Liquid	end ve	rsion					
			0	no valv	e spring	(standa	ndard) PVC			
			1	with 2 v	alve spi	rings. Ha	Hastelloy C4			
				Hydrau	ulic con	nection	on .			
				0	standa	rd conne	nnection			
				1	PVC ur	nion nut	ut and insert			
				2	PP unio	on nut ar	t and insert			
				3	PVDF (ınion nu	nut and insert			
							el union nut and insert			
				-			and hose nozzle			
				-			ut and hose nozzle			
					_		nut and hose nozzle			
				8	Stainle	ss steel	el union nut and hose nozzle			
					Versio					
					0		ProMinent® logo (standard)			
					1		out ProMinent® logo			
				M modified						
				Electrical power supply						
				S 3 ph, 230 V / 400 V; 50/60 Hz						
				M 1 ph AC 230 V; AC 50/60 Hz						
				N 1 ph AC 115 V; AC 60 Hz						
				Stroke sensor						
							0 no stroke sensor			
							3 with stroke sensor (Namur)			
							Stroke length adjustment			
							0 manual (standard)			

^{*} Digits 1 and 2=back pressure [bar]; digits 3, 4, 5=flow rate [l/h]

1.1 Motor Driven Metering Pump Vario C

.1.3 Spare Parts

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with PPE, PCB, PVT material versions:

- 1 diaphragm
- 1 suction valve assembly
- 1 discharge valve assembly
- 2 valve balls
- 1 complete sealing set (O-rings or cover rings with PVT design)

Scope of delivery with SST material version:

- 1 diaphragm
- 2 valve balls
- 1 complete sealing set (cover rings, flat seals, ball seat)

Spare Parts Kit for Motor Driven Metering Pump Vario c

Applicable to Identity code: Type VAMc 10008, 10016, 07026, 07042

Liquid end	Materials in contact with the medium	Order no.
FM 042 - DN 10	PPE	910753
FM 042 - DN 10	PCB	910754
FM 042 - DN 10	PVT	1003641
FM 042 - DN 10	SST	910751

Applicable to Identity code: Type VAMc 07012, 07024, 04039, 04063

Liquid end	Materials in contact with the medium	Order no.
FM 063 - DN 10	PPE	910758
FM 063 - DN 10	PCB	910759
FM 063 - DN 10	PVT	1003642
FM 063 - DN 10	SST	910756

Spare Diaphragms for Motor Driven Metering Pump Vario c

	Order no.
Vario with FM 042 Type VAMc 10008, 10016, 07026, 07042	811458
Vario with FM 063 Type VAMc 07012, 07024, 04039, 04063	811459

Accessories

- Foot Valves for Motor Driven Metering Pumps see page → 1-46
- Injection Valves for Motor Driven Metering Pumps see page → 1-49
- Connectors and Seals for Motor Driven Metering Pumps see page \rightarrow 1-75
- Suction Lances, Suction Assemblies and Level Switches for Motor Driven Metering Pumps see page → 1-64
- Speed Controllers see page → 1-82
- Thermal metering monitor see page → 1-92

Spare Parts

■ Custom Accessories See page → 1-89

1.2.1

P SI 0128 SW

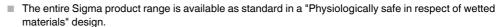
Sigma/ 1 Basic version

Motor Driven Metering Pump Sigma/ 1 (Basic Type)

The robust pump for safe and reliable use

Capacity range 17 - 144 l/h, 12 - 4 bar

The Sigma/ 1 Basic is an extremely robust motor-driven metering pump with patented multi-layer safety diaphragm for excellent process safety. It offers a wide range of power end designs, such as three-phase or 1-phase AC motors, even for Exe and Exde areas with ATEX certification.

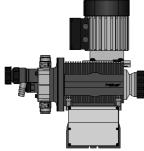

The Sigma/ 1 diaphragm metering pump together with pumps of type Sigma/ 2 and Sigma/ 3 represent an integrated product range. They cover the capacity range from 17 to 1,030 l/h, with a consistent operating concept, control concept and spare parts management. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Your benefits

Excellent process safety and reliability:

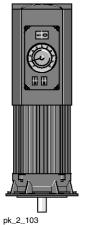
- In the event of an accident, the feed chemical does not escape to the outside nor into the pump's power end, thanks to the patented multi-layer safety diaphragm with optical (optionally electric) signalling
- Integrated relief valve protects the pump against overloading
- Reliable operation by bleed option during the suction process

Flexible adaptation to the process:


- Metering pumps with electro-polished stainless steel metering head and EHEDG certification enable them to be used in hygienically challenging applications
- Adaptation to specific installation situations, as the "Liquid end on left" is available as standard
- Wide range of power end versions, also for use in Exe and Exde areas and different flange designs for the use of customised motors
- Customised designs are available on request

Technical Details

- Stroke length: 4 mm,
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 1% increments (optionally with actuator or control drive)
- Metering reproducibility is better than ± 2% within the 30-100% stroke length adjustment range under certain defined conditions and after proper installation.
- Wetted materials: PVDF, stainless steel 1.4571/1.4404, special materials on request
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with diaphragm rupture warning system via a contact)
- Integrated hydraulic relief and bleed valve
- A wide range of power end versions is available: Three-phase standard motor, 1-phase AC motor, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection IP 55 (optionally II2GEExeIIT3, II2GEExdIICT4)
- Fibreglass-reinforced plastic housing
- Liquid end on left is available as standard
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps


P_SI_0065_C1

P_SI_0152_SW Sigma / 1 liquid end on left

Field of application

- Volume-proportional addition of chemicals in water treatment, e.g. sodium-calcium hypochlorite for the disinfection of potable water
- Addition of chemicals depending on the measured value, e.g. metering of acid and alkali for pH neutralisation in waste water treatment
- Time-controlled addition of chemicals in the cooling water circuit
- Pulse-controlled metering in the bottling of different volumes e.g. glycerin filling of manometers

Variable speed motor with integrated frequency converter

Sigma Basic Type Control Functions (S1Ba)

Stroke length actuator/controller

Actuator for automatic stroke length adjustment, actuating period approx. 1 sec for 1 % stroke length, 1 k Ohm response signal potentiometer, enclosure rating IP 54.

Controller consists of actuator with servomotor and integrated servo control for stroke length adjustment via a standard signal. Standard signal input 0/4-20 mA corresponds to stroke length 0 - 100%. Automatic/manual operation selection key for manual stroke adjustment. Mechanical status display of actual stroke length value output 0/4-20 mA for remote display.

Variable speed motors with integrated frequency converter (identity code specification V)

Power supply 1ph 230 V, 50/60 Hz, 0.18 kW

Externally controllable with 0/4-20 mA (see Fig. pk_2_103).

Upon request externally controllable via PROFIBUS® DP

Speed controllers with frequency converter (identity code specification Z)

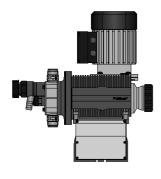
The speed controller assembly consists of a frequency converter and a variable speed motor of 0.09 kW

"Physiologically Safe (FDA) in Respect of Wetted Materials" Version

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

FDA guidelines:

- Material PTFE: FDA No. 21 CFR § 177.1550
- Material PVDF: FDA No. 21 CFR § 177.2510


Available for material version PVT and SST.

Identity code example: S1BaH04084PVTS00 F S000

Sigma / 1 Basic Type Version "Liquid End on Left Side"

This version offers additional adaptability to special installation situations, e.g. in combination with storage tanks, brackets, etc.

Identity code example: S1BaH07042PVTS00 5 S000

P_SI_0152_SW Sigma / 1 liquid end on left

Technical Data

Type S1Ba	With 1500 rpm motor at 50 Hz			Wit	h 1800 rpm mo	tor at 60 Hz	Suction Perm. pre- lift pressure		Connection suction/	, Shipping weight	
		ma	y rate at ax. back pressure	Max. stroke rate	D	elivery rate at max. back pressure	Max. stroke rate		suction side	discharge side	
	bar	I/h	ml/	Strokes/	psi	I/h/gph (US)	Strokes/	m WC	bar	G-DN	kg
<u></u>			stroke	min			min				
12017 PVT	10	17	3.8	73	174	20.4/5.3	88	7	1	3/4–10	9
12017 SST	12	17	3.8	73	174	20.4/5.3	88	7	1	3/4–10	12
12035 PVT	10	35	4.0	143	174	42.0/11.0	172	7	1	3/4–10	9
12035 SST	12	35	4.0	143	174	42.0/11.0	172	7	1	3/4–10	12
10050 PVT	10	50	4.0	205	145	60.0/15.8	246	7	1	3/4-10	9
10050 SST	10	50	4.0	205	145	60.0/15.8	246	7	1	3/4-10	12
10022 PVT	10	22	5.0	73	145	26.4/6.9	88	6	1	3/4-10	9
10022 SST	10	22	5.0	73	145	26.4/6.9	88	6	1	3/4-10	12
10044 PVT	10	44	5.1	143	145	52.8/13.9	172	6	1	3/4-10	9
10044 SST	10	44	5.1	143	145	52.8/13.9	172	6	1	3/4-10	12
07065 PVT	7	65	5.2	205	102	78.0/20.6	246	6	1	3/4-10	9
07065 SST	7	65	5.2	205	102	78.0/20.6	246	6	1	3/4-10	12
07042 PVT	7	42	9.5	73	102	50.4/13.3	88	3	1	1–15	10
07042 SST	7	42	9.5	73	102	50.4/13.3	88	3	1	1–15	14
04084 PVT	4	84	9.7	143	58	100.8/26.6	172	3	1	1–15	10
04084 SST	4	84	9.7	143	58	100.8/26.6	172	3	1	1–15	14
04120 PVT	4	120	9.7	205	58	144.0/38.0	246	3	1	1–15	10
04120 SST	4	120	9.7	205	58	144.0/38.0	246	3	1	1–15	14

Performance data for TTT, see type PVT

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls	Integral relief valve
PVT	PVDF	PVDF	PTFE/PTFE	Ceramic	PVDF/FKM or EPDM
SST	Stainless steel 1.4404	Stainless steel 1.4581	PTFE/PTFE	Stainless steel 1.4404	Stainless steel/FKM or EPDM
TTT*	PTFE + 25% carbon	PTFE + 25% carbon	PTFE/PTFE	Ceramic	-

^{*} specifically for areas at risk from explosion

With "F" design - "physiologically safe - FDA" the ball seat is made of PVDF

Motor Data

Identity code specification	Power supply	Δ/Υ			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 265-280 V/440-480 V	50 Hz 60 Hz	0.09 kW 0.09 kW	
Т	3 ph, IP 55	220-240 V/380-420 V 265-280 V/440-480 V	50 Hz 60 Hz	0.09 kW 0.09 kW	With PTC, speed adjustment range 1:5
R	3 ph, IP 55	220-240 V/380-420 V	50 Hz	0.09 kW	With PTC, speed adjustment range 1:20 with external fan 1ph 230 V; 50/60Hz
V0	1 ph, IP 55	230 V ±10%	50/60 Hz	0.18 kW	Variable speed motor with integrated frequency converter control range 1:20
М	1 ph AC, IP 55	230 V ±5%	50/60 Hz	0.12 kW	
N	1 ph AC, IP 55	115 V ±5%	60 Hz	0.12 kW	
L1	3 ph, II2GEExelIT3	220-240 V/380-420 V	50 Hz	0.12 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.18 kW	With PTC, speed adjustment range 1:5
P1	3 ph, II2GEExelIT3	250-280 V/440-480 V	60 Hz	0.12 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	0.18 kW	With PTC, speed adjustment range 1:5

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IE3 standard in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

Sigma/ 1 Basic Type (S1Ba)

S1Ba	Drive t	ype													
	Н	Main drive, diaphragm													
		Pump type													
		, amp	bar	l/h		I	bar	l/h							
		12017	12	17		07065		65							
		12035		35		07042		42							
		10050		50		04084		84							
		10022	10	22		04120	4	120							
		10044	10	44											
			Materi	al of liq	uid end										
			PV		(max. 10										
			SS		ss steel	,									
			TT			arhon (n	on (max. 10 bar)								
			' '			11) 110011	iax. io i	Jul)							
		Seal material T PTFE seal													
				!											
					Diaphr										
					S		ayer safety diaphragm with optical rupture indicator ayer safety diaphragm with rupture signalling (contact)								
					Α	Multi-la									
						Liquid	end ve	rsion							
						0	No spri	ng							
						1			rings, H	astellov	C. 0.1	bar			
						4**			-				spring, only with PV and SS		
						5**									
						-							e springs, only with PV and SS		
						6**							valve spring, only with PV and SS		
						7**	With pr	essure i	elief val	ve, EPD	M seal	, with val	lve spring, only with PV and SS		
							Hydrau	ılic con	nection	1					
							0	Standa	rd						
							1	Union r	nut and I	PVC inse	ert				
							2		nut and I						
							3		nut and I						
							-	-							
							4		nut and						
							7		nut and I						
							8	Union r	nut and \$	SS hose	nozzle				
							9	Union r	nut and s	stainless	steel h	ose noz	zle		
								Versio	n						
								0		oMinen	t® logo	(standar	rd)		
								1		t ProMir			- /		
								M	Modifie		10111 10	90			
								F			16-	+ · /ED A	Non-constant control		
											cai sale	ily (FDA)) in respect of wetted materials		
								5	Left liqu						
										cal pow					
									S				60 Hz, 0.09 kW		
									Т	3 ph, 23	30 V/40	0 V 50/6	60 Hz, with PTC		
									R	Variable	speed	motor 3 p	oh, 230/400 V, with PTC, with external fan 1 ph 230 V 50/60 Hz		
									V (0)	Variable	e speed	d motor v	with integrated frequency converter 1 pH, 230 V, 50/60 Hz		
									Z	Speed	control	compl 1	ph 230 V, 50/60 Hz (variable speed motor + FC)		
									M	•			Hz, 0.09 kW		
									N				0.09 kW		
									L				Hz, (Exe, Exd)		
									Р				Hz, (Exe, Exd)		
									2	No mot	or, C 42	2 flange	(NEMA)		
									3	No mot	or, B 5,	size 56	(DIN)		
										Enclos	ure rat	ina			
										0		standard	4)		
										1			sion ATEX-T3		
										2					
										2			sion ATEX-T4		
											Stroke	senso			
											0	No stro	oke sensor (standard)		
											2	Pacing	relay (reed relay)		
			1			1	1				3		sensor (Namur) for hazardous locations		
			1			1	1				_		e length adjustment		
1															
			1			1	1					0	Manual (standard)		
			1			1	1					1	With stroke positioning motor, 230 V/50/60 Hz		
			1			1	1					2	With stroke positioning motor, 115 V/60 Hz		
			1			1	1					3	With stroke control motor, 020 mA 230 V/50/60 Hz		
1												4	With stroke control motor 420 mA 230 V/50/60 Hz		
			1			1	1								
1	1	1			1							5	With stroke control motor 020 mA 115 V/60 Hz		
			1			1	1					6	With stroke control motor 420 mA 115 V/60 Hz		

^{* 10} bar with the PVDF and TTT version.

EHEDG-certified (European Hygienic Eng. Design Group) electropolished stainless steel dosing heads (< Ra 0.8) type EL class I are available on request.

^{**} Standard with tube nozzle in the bypass. Threaded connection on request.

^{***} Internal thread of insert SS DN10-Rp 3/8, DN15-Rp 1/2

1.2.2 Spare Parts

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with PVT material version:

- 1 diaphragm
- 1 suction valve assembly
- 1 discharge valve assembly
- 2 valve balls
- 1 elastomer sealing set (EPDM, FKM-B)
- 2 ball seat discs
- 4 composite seals

Scope of delivery with SST material version:

- 1 diaphragm
- 2 valve balls
- 4 complete sealing sets (cover rings, ball seat discs)
- 4 composite seals

Spare Parts Kit for Sigma/ 1 for Design With Multi-layer Safety Diaphragm

(For identity code: Type 12017, 12035, 10050)

Liquid end	Materials in contact with the medium		Order no.
FM 50 - DN 10	PVT	_	1035964
FM 50 - DN 10	TTT	with 2 valves cpl.	1077570
FM 50 - DN 10	SST	-	1035966
FM 50 - DN 10	SST	with 2 valves cpl.	1035965

(For identity code: Type 10022, 10044, 07065)

Liquid end	Materials in contact with the medium		Order no.
FM 65 - DN 10	PVT	_	1035967
FM 65 - DN 10	TTT	with 2 valves cpl.	1077571
FM 65 - DN 10	SST	-	1035969
FM 65 - DN 10	SST	with 2 valves cpl.	1035968

(For identity code: Type 07042, 04084, 04120)

Liquid end	Materials in contact with the medium		Order no.
FM 120 - DN 15	PVT	_	1035961
FM 120 - DN 15	TTT	with 2 valves cpl.	1077572
FM 120 - DN 15	SST	-	1035963
FM 120 - DN 15	SST	with 2 valves cpl.	1035962

Spare Parts Kits for Sigma/ 1 for Design With Old Diaphragm

(For Identity code: Type 12017, 12035, 10050)

Liquid end	Materials in contact with the medium		Order no.
FM 50 - DN 10	PVT	-	1010541
FM 50 - DN 10	SST	_	1010554
FM 50 - DN 10	SST	with 2 valves cpl.	1010555

(For Identity code: Type 10022, 10044, 07065)

Liquid end	Materials in contact with the medium		Order no.
FM 65 - DN 10	PVT	-	1010542
FM 65 - DN 10	SST	-	1010556
FM 65 - DN 10	SST	with 2 valves cpl.	1010557

(For Identity code: Type 07042, 04084, 04120)

Liquid end	Materials in contact with the medium		Order no.
FM 120 - DN 15	PVT	-	1010543
FM 120 - DN 15	SST	_	1010558
FM 120 - DN 15	SST	with 2 valves cpl.	1010559

Spare Parts Kit for Sigma/ 1 for FDA Design (Physiologically Safe)

(For Identity code: Type 12017, 12035, 10050)

Liquid end	Materials in contact with the medium		Order no.
FM 50 - DN 10	PVT	-	1046466
FM 50 - DN 10	SST	without valve	1046468
FM 50 - DN 10	SST	with valve	1046467

(For Identity code: Type 10022, 10044, 07065)

Liquid end	Materials in contact with the medium		Order no.
FM 65 - DN 10	PVT	-	1046469
FM 65 - DN 10	SST	without valve	1046471
FM 65 - DN 10	SST	with valve	1046470

(For Identity code: Type 07042, 04084, 04120)

Liquid end	Materials in contact with the medium		Order no.
FM 120 - DN 15	PVT	-	1046453
FM 120 - DN 15	SST	without valve	1046465
FM 120 - DN 15	SST	with valve	1046464

Multi-layer Safety Diaphragm (Standard)

	Order no.
FM 50 (type 12017; 12035; 10050)	1030114
FM 65 (type 10022; 10044; 07065)	1030115
FM 120 (type 07042; 04084; 04120)	1035828

Metering Diaphragm (Old Version)

	Order no.
Sigma/ 1 FM 50 (12017; 12035; 10050)	1010279
Sigma/ 1 FM 65 (10022; 10044; 07065)	1010282
Sigma/ 1 FM 120 (07042; 04084; 04120)	1010285

Spare Parts Kits for Integrated Relief Valve

Consisting of two compression springs made from Hastelloy C and four FKM-A and EPDM O-rings each

	For material	Seals	Order no.
ETS overflow valve 4 bar	PVT/SST	FKM-A/EPDM	1031199
ETS overflow valve 7 bar	PVT/SST	FKM-A/EPDM	1031200
ETS overflow valve 10 bar	PVT/SST	FKM-A/EPDM	1031201
ETS overflow valve 12 bar	PVT/SST	FKM-A/EPDM	1031202

Accessories

- Foot Valves see page → 1-46
- Injection Valves see page → 1-49
- Connector Parts, Seals, Hoses see page → 1-75
- Suction Lances/Suction Assemblies see page → 1-64
- Speed Controllers see page → 1-82
- Dosierüberwachung Mengenmessung see page → 1-92

Spare Parts

■ Custom Accessories See page → 1-89

1.3.1

Motor Driven Metering Pump Sigma/ 1 (Control Type)

The intelligent pump for safe and reliable use in many applications.

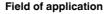
Capacity range 17 - 117 l/h, 12 - 4 bar

The Sigma / 1 Control can be used flexibly as an extremely robust motor-driven diaphragm metering pump. Excellent process safety and reliability is guaranteed with the patented multi-layer safety diaphragm. Highlights include removable control unit, adjustable metering profiles, as well as a variety of power end and control configurations.

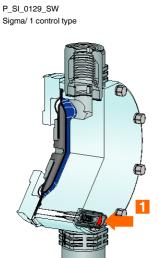
The Sigma/ 1 Control diaphragm metering pump together with pumps of type Sigma/ 2 Control and Sigma/ 3 Control represent an integrated product range. They cover the capacity range from 17 to 1,040 l/h. The entire Sigma Control product range is equipped with intelligent features to provide a high level of operating convenience, safety and efficiency. The pump features a removable operating unit and adjustable metering profiles to ensure optimum metering results.

Your benefits

Excellent process safety and reliability:


- In the event of an accident, the feed chemical does not escape to the outside nor into the pump's power end, thanks to the patented multi-layer safety diaphragm with optical (optionally electric) signalling
- Integrated overload shut-down in the pump control to protect the pump from overloading and thus significantly reduced pressure surges caused by blockages.
- Integrated relief valve protects the pump against overloading and bleed option during the suction process ensures reliable operation
- Metering reproducibility is better than ± 2% with a 30-100% stroke length adjustment range under certain defined conditions and with proper installation.

Flexible adaptation to the process:


- Detachable operating unit with large illuminated LC display for outstanding user convenience
- Metering profiles for optimum metering results
- The entire Sigma product range is available as standard in a "Physiologically safe in respect of wetted materials" design and with electro-polished stainless steel dosing head and EHEDG certification for applications with strict hygiene requirements
- Different control options are available, as well as easy connection to bus-networked systems by PROFIBUS®
- Adaptation to specific installation situations, as the "Liquid end on left" option is available as standard
- Customised designs are available on request

Technical Details

- Stroke length: 4 mm,
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually using self-locking rotary dial in 1% increments
- Metering reproducibility is better than ± 2% in the 30 100% stroke length adjustment range under defined conditions and with correct installation
- Wetted materials: PVDF, stainless steel 1.4571/1.4404, special materials on request
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with diaphragm rupture warning system via a contact)
- Integrated hydraulic relief and bleed valve
- Removable operating unit (HMI) with large illuminated LC display
- Metering profiles for optimum metering results
- \blacksquare Power supply: 1-phase, 100 230 V ±10%, 240 V ± 6%, 50/60 Hz (110 W)
- Degree of protection IP 65
- Fibreglass-reinforced plastic housing
- Liquid end on left is available as standard
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps.

- Volume-proportional addition of chemicals in water treatment, e.g. sodium-calcium hypochlorite for the disinfection of potable water
- Neutralisation in waste water treatment
- Time-controlled addition of chemicals in the cooling water circuit
- Pulse-controlled metering in the bottling of different volumes e.g. glycerin filling of manometers

P_SI_0065_C1

1: Diaphraam rupture sensor

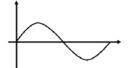
P_SI_0153_SW Sigma / 1 Control type design, liquid end on left

P SI 0099 SW3

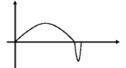
Detachable Operating Unit (HMI)

The operating unit (HMI) can be attached directly to the metering pump or mounted on the wall alongside the pump. This provides the operator with a range of options for the integration of a metering system in the overall system that it is readily accessible and easy to use. Moreover the removable operating unit offers additional protection against unauthorised operation of the metering pump or against modification of the pump settings. The operating unit can, for example, be completely removed for project applications.

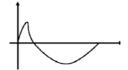
Individual functions of the metering pump can be easily selected and adjusted with five program keys. An illuminated LCD display provides information about the relevant operating status. LEDs on the operating unit and the control unit indicate the active pump functions or the pump status.


Metering Profiles

Metering profiles guarantee optimum metering results by adapting the metering behaviour of the metering pump to the application or chemical used.


The stroke motion of the displacement body is continually recorded and regulated so that the stroke is made in line with the desired metering profile. The pump can be operated in normal mode (Diagram 1), with optimised discharge stroke (Diagram 2) or with optimised suction stroke (Diagram 3). Three typical metering profiles are shown schematically with the behaviour over time.

In normal operating mode, the time behaviour for the suction stroke and the discharge stroke is similar (Diagram 1). In the mode with optimised discharge stroke (Diagram 2), the discharge stroke is lengthened while the suction stroke is made as quickly as possible. This set-up is suited to applications which require optimum mixing and as continuous a mixing of chemicals as possible, for example.


In the mode with the optimised suction stroke (diagram 3), the suction stroke is carried out as slowly as possible, permitting precise and trouble-free metering of viscous and gaseous media. Select this setting to minimise the NPSH value as well.

P_SI_0102_SW
Diagram 1: Discharge stroke, suction stroke equal

P_SI_0103_SW
Diagram 2: Long discharge stroke, short suction stroke

P_SI_0104_SW
Diagram 3: Short discharge stroke, long suction stroke

"Physiologically Safe (FDA) in Respect of Wetted Materials" Version

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

FDA guidelines:

- Material PTFE: FDA No. 21 CFR § 177.1550
- Material PVDF: FDA No. 21 CFR § 177.2510

Available for material version PVT and SST.

Identity code example: S1CbH07042PVTS01 F UA10S0DE

Sigma / 1 Control Type Version "Liquid End on Left Side"

This version offers additional adaptability to special installation situations, e.g. in combination with storage tanks, brackets, etc.

Identity code example: S1CbH07042PVTS01 5 UA10S0DE

P_SI_0153_SW Sigma / 1 Control type design, liquid end on left

Technical Data

Type S1Cb	Deli	-	ate at max. k pressure	Max. stroke rate	•	ate at max. k pressure	Suction lift	Perm. pre- pressure suction side	Connection, suction/ discharge side	Shipping weight
	bar	l/h	ml/stroke	Strokes/min	psi	gph (US)	m WC	bar	G-DN	kg
12017 PVT	10	21	3.8	90	145	5.5	7	1	3/4–10	9
12017 SST	12	21	3.8	90	174	5.5	7	1	3/4–10	12
12035 PVT	10	42	4.0	170	145	11.1	7	1	3/4–10	9
12035 SST	12	42	4.0	170	174	11.1	7	1	3/4-10	12
10050 PVT	10	49	4.0	200	145	12.9	7	1	3/4–10	9
10050 SST	10	49	4.0	200	145	12.9	7	1	3/4–10	12
10022 PVT	10	27	5.0	90	145	7.1	6	1	3/4-10	9
10022 SST	10	27	5.0	90	145	7.1	6	1	3/4-10	12
10044 PVT	10	53	5.1	170	145	14.0	6	1	3/4-10	9
10044 SST	10	53	5.1	170	145	14.0	6	1	3/4-10	12
07065 PVT	7	63	5.2	200	102	16.6	6	1	3/4-10	9
07065 SST	7	63	5.2	200	102	16.6	6	1	3/4-10	12
07042 PVT	7	52	9.5	90	102	13.7	3	1	1–15	10
07042 SST	7	52	9.5	90	102	13.7	3	1	1–15	14
04084 PVT	4	101	9.7	170	58	26.7	3	1	1–15	10
04084 SST	4	101	9.7	170	58	26.7	3	1	1–15	14
04120 PVT	4	117	9.7	200	58	30.9	3	1	1–15	10
04120 SST	4	117	9.7	200	58	30.9	3	1	1–15	14

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure	Seals/ball seat	Balls	Integral relief valve
		connector			
PVT	PVDF	PVDF	PTFE/PTFE	Ceramic	PVDF/FKM or EPDM
SST	Stainless steel 1.4404	Stainless steel 1.4581	PTFE/PTFE	Stainless steel 1.4404	Stainless steel/FKM or EPDM

With "F" design - "physiologically safe - FDA" the ball seat is made of PVDF

Motor Data

Identity code specification		Power supply			Remarks
U	1-phase, IP 65	100 – 230 V ±10 % / 240 V ±6 %	50/60 Hz	110 W	

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IE3 standard in compliance with the Ecodesign Directive 2009/125/EC.

Sigma/ 1 Control Type (S1Cb)

S1Cb	Drive t	type														
	Н		ower en	d, diaph	ragm											
		Pump type														
			bar	l/h				bar	l/h							
		12017	12	21			07065	7	63							
1		12035	12	42			07042	7	52							
		10050		49			04084		101							
		10022		27			04120		117							
		10044	10	53												
			-	head i	mataria	1										
			PV		(max. 10											
			SS		ss steel											
			00		naterial											
				T	PTFE											
				'		cement	hadu									
					S		ayer safe	tv dianl	nraam w	ith ontic	al runtur	e indica	etor.			
					A		ayer safe		•				1101			
					^		•			iti i elect	ilcai sigi	ıaı				
						0 Dosini	g head v		ı g (standa	ard)						
						1			rings, H	,	C. 0.1 h	or				
						2			re, FKM							
						3			e, FKM			•				
						3 4**			e, FRM s e, FPM s							
						5**			e, FPM s e, FPM s	,		-				
						6**			e, FPM s e, EPDM							
						7**							_			
						1 -			e, EPDN				5			
						8 9			e, EPDN							
						9			e, EPDN	n seai, v	iiii vaiv	e spring				
									nector ard conn	4!			La	Lucian		
							0		ard conn				4 7			stainless steel*** insert PVDF tube nozzle
							2		nut and				8			stainless steel tube nozzle
							3		nut and				9			stainless steel welding sleeve
							3			r VDF III	SEIL		٦	Official	nut and	stainless steel welding sleeve
								Versic 0		roMinen	en l ®t					
								1		t ProMir		.00				
								F				•) in rocn	act of w	vetted ma	atoriale
								5		uid end	oui ouioi	.y (1 D/1)	, гоор	00101	vollou iii	atorialo
								Ü		c powe	r eunnh					
									U				% 240 \	/ +6%	50/60 Hz	110 W
									ľ		and plu		,o, <u> </u>	2070,	00/00112	., 110 11
										A	2 m Eu			IC	l2 m Au	ıstralia
										В	2 m Sw			D	2 m US	
											Relay	100		-	1211100	,
											0	No rela	av.			
											1		•	relay (230 V, 8	Δ)
											3) mA) + pacing relay (24 V, 100 n
											8					ault indicating / pacing relay (24
											•	100 m/		.oguo o	atput	aana.cag , pacg .c.ay (= :
													ol versio	ons		
															rnal con	tact with pulse control
												1	as 0 +	analogi	ue + met	ering profiles
												6				Pinterface, M 12
												7	as 1 +	CANop	en (CiA	402, M12 plug), pump without
												-	operati	ing unit	(HMI) **	**
													Overlo	ad sw	itch-off	
													0	withou	ut overloa	ad switch-off
Langua	age			1										Opera	ating uni	it (HMI)
DE	germar	n												S		.5 m cáble)
EN	english													1	HMI +	2 m cable
ES	spanisl													2		5 m cable
FR	french													3		10 m cable
IT	Italian													X		t operating unit (HMI)
NL	dutch															s code
PL	polish														0	without access control
PT	portugi	uese													1	with access control

^{* 10} bar with PVDF version.

EHEDG-certified (European Hygienic Eng. Design Group) electropolished stainless steel dosing heads (< Ra 0.8) type EL class I are available on request.

^{**} Standard with tube nozzle in the bypass. Threaded connection on request.

^{***} Internal thread of insert SS DN10-Rp 3/8, DN15-Rp 1/2

^{****} An HMI order no. 1042550 is required for manual operation, e.g. with the failure of the CAN bus

1.3.2 Spare Parts

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with PVT material version:

- 1 diaphragm
- 1 suction valve assembly
- 1 discharge valve assembly
- 2 valve balls
- 1 elastomer sealing set (EPDM, FKM-B)
- 2 ball seat discs
- 4 composite seals

Scope of delivery with SST material version:

- 1 diaphragm
- 2 valve balls
- 4 complete sealing sets (cover rings, ball seat discs)
- 4 composite seals

Spare Parts Kit for Sigma/ 1 for Design With Multi-layer Safety Diaphragm

(For identity code: Type 12017, 12035, 10050)

Liquid end	Materials in contact with the medium		Order no.
FM 50 - DN 10	PVT	_	1035964
FM 50 - DN 10	TTT	-	1077570
FM 50 - DN 10	SST	-	1035966
FM 50 - DN 10	SST	with 2 valves cpl.	1035965

(For identity code: Type 10022, 10044, 07065)

Liquid end	Materials in contact with the medium		Order no.
FM 65 - DN 10	PVT	_	1035967
FM 65 - DN 10	TTT	-	1077571
FM 65 - DN 10	SST	-	1035969
FM 65 - DN 10	SST	with 2 valves cpl.	1035968

(For identity code: Type 07042, 04084, 04120)

Liquid end	Materials in contact with the medium		Order no.
FM 120 - DN 15	PVT	-	1035961
FM 120 - DN 15	TTT	-	1077572
FM 120 - DN 15	SST	-	1035963
FM 120 - DN 15	SST	with 2 valves col	1035962

Spare Parts Kits for Sigma/ 1 for Design With Old Diaphragm

(For Identity code: Type 12017, 12035, 10050)

Liquid end	Materials in contact with the medium		Order no.
FM 50 - DN 10	PVT	-	1010541
FM 50 - DN 10	SST	-	1010554
FM 50 - DN 10	SST	with 2 valves cpl.	1010555

(For Identity code: Type 10022, 10044, 07065)

Liquid end	Materials in contact with the medium		Order no.
FM 65 - DN 10	PVT	-	1010542
FM 65 - DN 10	SST	_	1010556
FM 65 - DN 10	SST	with 2 valves cpl.	1010557

(For Identity code: Type 07042, 04084, 04120)

Liquid end	Materials in contact with the medium		Order no.
FM 120 - DN 15	PVT	-	1010543
FM 120 - DN 15	SST	_	1010558
FM 120 - DN 15	SST	with 2 valves cpl.	1010559

Spare Parts Kit for Sigma/ 1 for FDA Design (Physiologically Safe)

(For Identity code: Type 12017, 12035, 10050)

Liquid end	Materials in contact with the medium		Order no.
FM 50 - DN 10	PVT	-	1046466
FM 50 - DN 10	SST	without valve	1046468
FM 50 - DN 10	SST	with valve	1046467

(For Identity code: Type 10022, 10044, 07065)

Liquid end	Materials in contact with the medium		Order no.
FM 65 - DN 10	PVT	-	1046469
FM 65 - DN 10	SST	without valve	1046471
FM 65 - DN 10	SST	with valve	1046470

(For Identity code: Type 07042, 04084, 04120)

Liquid end	Materials in contact with the medium		Order no.
FM 120 - DN 15	PVT	-	1046453
FM 120 - DN 15	SST	without valve	1046465
FM 120 - DN 15	SST	with valve	1046464

Spare Parts Kits for Integrated Relief Valve (S1Ca, S1Cb)

Consisting of two compression springs made from Hastelloy C and four FKM-A and EPDM O-rings each

	For material	Seals	Order no.
ETS overflow valve 4 bar	PVT/SST	FKM-A/EPDM	1031199
ETS overflow valve 7 bar	PVT/SST	FKM-A/EPDM	1031200
ETS overflow valve 10 bar	PVT/SST	FKM-A/EPDM	1031201
ETS overflow valve 12 bar	PVT/SST	FKM-A/EPDM	1031202

Spare Parts Kits for Integrated Bleed Valve (S1Cb)

Consisting of a compression spring made from Hastelloy C and four FKM-A and EPDM O-rings each For identity code specification "Dosing head version" with characteristic "2", "3", "8", "9"

	For material	Seals	Order no.
ETS	PVT/SST	FKM-A/EPDM	1043785

Multi-layer Safety Diaphragm (Standard)

	Order no.
FM 50 (type 12017; 12035; 10050)	1030114
FM 65 (type 10022; 10044; 07065)	1030115
FM 120 (type 07042; 04084; 04120)	1035828

Metering Diaphragm (Old Version)

	Order no.
Sigma/ 1 FM 50 (12017; 12035; 10050)	1010279
Sigma/ 1 FM 65 (10022; 10044; 07065)	1010282
Sigma/ 1 FM 120 (07042; 04084; 04120)	1010285

Spare Parts Kits for Integrated Relief Valve

Consisting of two compression springs made from Hastelloy C and four FKM-A and EPDM O-rings each

	For material	Seals	Order no.	
ETS overflow valve 4 bar	PVT/SST	FKM-A/EPDM	1031199	
ETS overflow valve 7 bar	PVT/SST	FKM-A/EPDM	1031200	
ETS overflow valve 10 bar	PVT/SST	FKM-A/EPDM	1031201	
ETS overflow valve 12 bar	PVT/SST	FKM-A/EPDM	1031202	

Protective cowling

Protection of the operating unit (HMI) of Sigma metering pumps against contamination; made from transparent silicone plastic. For Sigma control types S1Cb / S2Cb / S3Cb.

	Order no.
Protective cowling for operating unit (S1Cb, S2Cb, S3Cb)	1036724

Wall bracket

Wall bracket with operating lever for wall mounting of the operating unit (HMI) without any fittings. For Sigma control types S1Cb / S2Cb / S3Cb.

	Order no.
Wall bracket for operating unit (S1Cb, S2Cb, S3Cb)	1036683

Extension cable for operating unit (HMI)

	Order no.
Connecting cable - CAN M12 5-pole 1 m	1022139
Connecting cable - CAN M12 5-pole 2 m	1022140
Connecting cable - CAN M12 5-pole 5 m	1022141
Connecting cable - CAN M12 5-pin. 10 m*	1046383

Accessories of CANopen operation

An operating unit is needed for the manual operation of a CANopen pump.

	Order no.
Operating unit (HMI)	1042550

Accessories

- Foot Valves see page → 1-46
- Injection Valves see page → 1-49
- Connector Parts, Seals, Hoses see page \rightarrow 1-75
- Suction Lances/Suction Assemblies see page → 1-64
- $\quad \blacksquare \quad$ Dosierüberwachung Mengenmessung see page \rightarrow 1-92

Spare Parts

■ Custom Accessories See page → 1-89

Motor Driven Metering Pump Sigma/ 2 (Basic Type)

The robust pump for safe and reliable use.

Capacity range 50 - 420 l/h, 16 - 4 bar

Robust motor-driven diaphragm metering pumps, like the Sigma/ 2 Basic guarantee excellent process reliability with their patented multi-layer safety diaphragm. The diaphragm metering pump offers a wide range of power end versions, even for Exe and Exde areas with ATEX certification.

The Sigma/ 2 diaphragm metering pump together with pumps of type Sigma/ 1 and Sigma/ 3 represent an integrated product range. They cover the capacity range from 17 to 1,030 l/h, with a consistent operating concept, control concept and spare parts management. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Your benefits

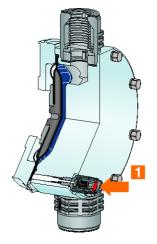
Excellent process safety and reliability:

- In the event of an accident, the feed chemical does not escape to the outside nor into the pump's power end, thanks to the patented multi-layer safety diaphragm with optical (optionally electric) signalling
- Integrated relief valve protects the pump against overloading
- Reliable operation by bleed option during the suction process

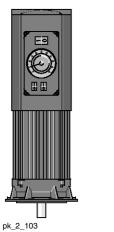
Flexible adaptation to the process:

- The entire Sigma product range is available as standard in a "Physiologically safe in respect of wetted materials" design.
- Metering pumps with electro-polished stainless steel metering head and EHEDG certification enable them to be used in hygienically challenging applications
- Wide range of power end versions, also for use in Exe and Exde areas and different flange designs for the use of customised motors
- Customised designs are available on request

Technical Details


- Stroke length: 5 mm,
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 1% increments (optionally with actuator or control drive)
- Metering reproducibility is better than ± 2% with a 30-100% stroke length adjustment range under certain defined conditions and with proper installation.
- Wetted materials: PVDF, stainless steel 1.4571/1.4404, special materials on request
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with diaphragm rupture warning system via a contact)
- Integrated hydraulic relief and bleed valve
- A wide range of power end versions is available: Three-phase standard motor, 1-phase AC motor, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection IP 55 (optionally II2GEExeIIT3, II2GEExdIICT4)
- Highly rigid fibreglass-reinforced plastic housing with excellent chemical resistance
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps.

Field of application


- Volume-proportional addition of chemicals in water treatment, e.g. sodium-calcium hypochlorite for the disinfection of potable water
- Addition of chemicals depending on the measured value, e.g. metering of acid and alkali for pH neutralisation in waste water treatment
- Time-controlled addition of chemicals in the cooling water circuit
- Pulse-controlled metering in the bottling of different volumes e.g. glycerin filling of manometers

P_SI_0130_SW Sigma/ 2 Basic Type

P SI 0065 C1 1: Diaphragm rupture sensor

Variable speed motor with integrated frequency converter

Sigma Basic Type Control Functions (S2Ba)

Stroke length actuator/controller

Actuator for automatic stroke length adjustment, actuating period approx. 1 sec for 1 % stroke length, 1 k Ohm response signal potentiometer, enclosure rating IP 54.

Controller consists of actuator with servomotor and integrated servo control for stroke length adjustment via a standard signal. Standard signal input 0/4-20 mA corresponds to stroke length 0 - 100%. Automatic/ manual operation selection key for manual stroke adjustment. Mechanical status display of actual stroke length value output 0/4-20 mA for remote display.

Variable speed motors with integrated frequency converter (identity code specification V)

Power supply 1ph 230 V, 50/60 Hz, 0.37 kW

Externally controllable with 0/4-20 mA (see Fig. pk_2_103)

On request externally controllable via PROFIBUS® DP

Speed controllers with frequency converter (identity code specification Z)

The speed controller assembly consists of a frequency converter and a variable speed motor of 0.37 kW.

"Physiologically Safe (FDA) in Respect of Wetted Materials" Version

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" version comply with the FDA guideline.

FDA guidelines:

- Material PTFE: FDA No. 21 CFR § 177.1550
- Material PVDF: FDA No. 21 CFR § 177.2510

Available for material version PVT and SST.

Identity code example: S2BaHM07220PVTS00 F S000

Technical Data

Type S2Ba	Wi	With 1500 rpm motor at 50 Hz			With 1800 rpm motor at 60 Hz			Suction lift	Perm. pre- pressure	Connection suction/	Shipping weight
			y rate at pressure	Max. stroke rate		elivery rate at ack pressure	Max. stroke rate		suction side	discharge side	
	bar	l/h	ml/ stroke	Strokes/ min	psi	I/h/gph (US)	Strokes/ min	m WC	bar	G-DN	kg
16050 PVT	10	50	11.4	73	145	60.0/15.8	87	7	3	1–15	15
16050 SST	16	47	11.4	73	232	56.0/14.7	87	7	3	1–15	20
16090 PVT	10	88	11.4	132	145	106.0/28.0	158	7	3	1–15	15
16090 SST	16	82	11.4	132	232	98.4/25.9	158	7	3	1–15	20
16130 PVT	10	135	10.9	198	145	156.0/41.2	238	7	3	1–15	15
16130 SST	16	124	10.9	198	232	148.0/39.0	238	7	3	1–15	20
07120 PVT	7	126	27.4	73	102	150.0/39.6	87	5	1	1 1/2–25*	16
07120 SST	7	126	27.4	73	102	150.0/39.6	87	5	1	1 1/2–25*	24
07220 PVT	7	220	27.7	132	102	264.0/69.7	158	5	1	1 1/2–25*	16
07220 SST	7	220	27.7	132	102	264.0/69.7	158	5	1	1 1/2-25*	24
04350 PVT	4	350	29.4	198	58	420.0/110.9	238	5	1	1 1/2–25*	16
04350 SST	4	350	29.4	198	58	420.0/110.9	238	5	1	1 1/2–25*	24

Performance data for TTT, see type PVT

Materials in Contact With the Medium

Mater	ial Dosing head	Suction/pressure connector	Seals/ball seat	Balls	Integral relief valve
PVT	PVDF	PVDF	PTFE/PTFE	Ceramic/glass*	PVDF/FKM or EPDM
SST	Stainless steel 1.4404	Stainless steel 1.4581	PTFE/PTFE	Stainless steel 1.4404	Stainless steel/FKM or EPDM
TTT**	PTFE + 25% carbon	PTFE + 25% carbon	PTFE/PTFE	Ceramic/glass*	-

^{*} with 07120, 07220, 04350

With "F" design - "physiologically safe - FDA" the ball seat is made of PVDF

Motor Data

Identity code specification	Power supply	Δ/Υ			Remarks
S	3-phase, IP 55	220 – 240 V/380 – 420 V 220 – 280 V/440 – 480 V	50 Hz 60 Hz	0.25 kW 0.25 kW	
Т	3-phase, IP 55	220 – 240 V/380 – 420 V 220 – 280 V/440 – 480 V	50 Hz 60 Hz	0.25 kW	with PTC, speed control range 1:5
R	3-phase, IP 55	220 – 240 V/380 – 420 V	50 Hz	0.37 kW	with PTC, speed control range 1:20 with external fan 1-phase 230 V; 50/60 Hz
V0	1-phase, IP 55	230 V ±5 %	50/60 Hz	0.37 kW	Variable speed motor with integrated frequency converter, adjustment range 1:20
M	1-phase AC, IP 55	230 V ±5 %	50/60 Hz	0.18 kW	
N	1-phase AC, IP 55	115 V ±5 %	60 Hz	0.18 kW	
L1	3-phase, II2GEExellT3	220 – 240 V/380 – 420 V	50 Hz	0.18 kW	
L2	3-phase, II2GEExdllCT4	220 – 240 V/380 – 420 V	50 Hz	0.18 kW	with PTC, speed control range 1:5
P1	3-phase, II2GEExellT3	250 – 280 V/440 – 480 V	60 Hz	0.18 kW	
P2	3-phase, II2GEExdIICT4	250 – 280 V/440 – 480 V	60 Hz	0.21 kW	with PTC, speed control range 1:5

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IE3 standard in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

With Sigma types 07120, 07220 and 04350, the dosing head is fitted with DN 25 (G 1 1/2) valves. As DN 20 is generally sufficient for these types of pipes (see technical data, suction/discharge side connector), the connector parts that can be ordered under the identity code (e.g. inserts) are already reduced to DN 20, i.e. piping and accessories can be installed in DN 20.

^{**} specifically for areas at risk from explosion

Sigma/ 2 Basic Type (S2Ba)

S2Ba	Drive t	vpe											
	HM		rive, dia	phragm									
		Pump											
		i ump	bar	I/h			bar	l/h					
		16050	16	47		07120		126					
			16	82		07220		220					
		16130		124		04350		350					
		10130			torial	04000		550					
			PV	end ma	max. 10	har)							
			SS			Dai)							
				Stainles			401						
			TT		25% ca	irbon (n	1ax. 101	oar)					
				Seal m									
					PTFE s								
					Diaphra								
					S		•		ragm w				
					Α	Multi-la	ıyer safe	ety diaph	ragm w	th ruptu	re signa	alling (co	ontact)
						Liquid	end ve	rsion					
						0	No spr	ing					
						1	With 2	valve sp	rings, H	astelloy	C4, 0.1	bar	
						4**	With pr	essure i	elief val	ve, FKN	l seal, n	o valve	spring, only with PV and SS
						5**	With pr	essure i	elief val	ve, FKN	l seal w	ith valve	e springs, only with PV and SS
						6**	With pr	essure i	elief val	ve, EPD	M seal.	without	valve spring, only with PV and SS
						7**							lve spring, only with PV and SS
						-			nection				
							0	Standa					
							1		nut and I	PVC ine	ort		
							2		nut and I				
							3		nut and I				
							4		nut and s				
							7		nut and f			- lo	
							8		nut and S				
							9		nut and	stainless	s steel n	iose noz	zzie
								Versio					
								0				(standa	urd)
								1		ProMir	nent® Ic	go	
								M	Modifie	d			
								F	with ph	ysiologi	cal safe	ty (FDA) in respect of wetted materials
									Electri	cal pow	er sup	ply	
									S	3 ph, 2	30 V/40	0 V 50/6	60 Hz
									Т	3 ph, 2	30 V/40	0 V 50/6	60 Hz, with PTC
									R	Variabl	e speed	l motor	3 ph, 230/400 V, with PTC, with external fan 1 ph 230 V
										50/60 H			
									V (0)				with integrated frequency converter 1 pH, 230 V, 50/60 Hz
									Z	Speed	control	compl 1	ph 230 V, 50/60 Hz (variable speed motor + FC)
									M			V/50/60	
									N	1 ph. A	C. 115	V, 60 Hz	2
									L				Hz, (Exe, Exd)
									P	-			Hz, (Exe, Exd)
									1	-			nge, Gr. 71 DIN
									2				NEMA 56 C
									3				ge, Gr. 63 DIN
									3				ge, Gr. 03 Dily
										Enclos			-1\
										0		standar	
										1			sion ATEX-T3
										2			sion ATEX-T4
											Stroke	senso	
											0		oke sensor (standard)
											2	Pacing	relay (reed relay)
1											3	Stroke	sensor (Namur) for hazardous locations
1												Stroke	e length adjustment
												0	Manual (standard)
1												1	With stroke positioning motor, 230 V/50/60 Hz
1												2	With stroke positioning motor, 115 V/50/60 Hz
1													, , ,
1												3	With stroke control motor, 020 mA 230 V/50/60 Hz
1												4	With stroke control motor, 420 mA 230 V/50/60 Hz
1												5	With stroke control motor, 020 mA 115 V/50/60 Hz
1												6	With stroke control motor, 420 mA 115 V/50/60 Hz

^{* 10} bar with the PVDF and TTT version.

EHEDG-certified (European Hygienic Eng. Design Group) electropolished stainless steel dosing heads (< Ra 0.8) type EL class I are available on request.

^{**} Standard with tube nozzle in the bypass. Threaded connection on request.

^{***} Internal thread of the insert SS DN15-Rp 1/2, DN25/20-G 3/4

1.4.2 Spare Parts

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with PVT material version:

- 1 diaphragm
- 1 suction valve assembly
- 1 discharge valve assembly
- 2 valve balls
- 1 elastomer sealing set (EPDM, FKM-B)
- 2 ball seat discs
- 4 composite seals

Scope of delivery with SST material version:

- 1 diaphragm
- 2 valve balls
- 2 ball seat discs
- 4 composite seals

Spare Parts Kit for Sigma/ 2 for Design With Multi-layer Safety Diaphragm

(Applies to identity code types 16050, 16090, 16130, 12050, 12090 and 12130)

Liquid end	Materials in contact with the medium		Order no.
FM 130 - DN 15	PVT	-	1035951
FM 130 - DN 15	TTT	with 2 valves cpl.	1077573
FM 130 - DN 15	SST	_	1035957
FM 130 - DN 15	SST	with 2 valves cpl.	1035954

(Applies to identity code types 07120, 07220 and 04350)

Liquid end	Materials in contact with the medium		Order no.
FM 350 - DN 25	PVT	=	1035953
FM 350 - DN 25	TTT	with 2 valves cpl.	1077574
FM 350 - DN 25	SST	_	1035960
FM 350 - DN 25	SST	with 2 valves cpl.	1035959

Spare Parts Kits for Sigma/ 2 for Design With Old Diaphragm

(Applies to identity code types 16050, 16090, 16130, 12050, 12090 and 12130)

Liquid end	Materials in contact with the medium		Order no.
FM 130 - DN 15	PVT	-	740324
FM 130 - DN 15	SST	-	740326
FM 130 - DN 15	SST	with 2 valves cpl.	740328

(Applies to identity code types 07120, 07220 and 04350)

Liquid end	Materials in contact with the medium		Order no.
FM 350 - DN 25	PVT	-	740325
FM 350 - DN 25	SST	-	740327
FM 350 - DN 25	SST	with 2 valves cpl.	740329

Spare Parts Kits for Sigma/ 2 With FDA Design (Physiologically Safe)

(Applies to identity code types 16050, 16090, 16130, 12050, 12090 and 12130)

Liquid end	Materials in contact with the medium		Order no.
FM 130 - DN 15	PVT	-	1046472
FM 130 - DN 15	SST	without valve	1046473
FM 130 - DN 15	SST	with valve	1046474

(Applies to identity code types 07120, 07220 and 04350)

Liquid end	Materials in con medium	tact with the	Order no.	
FM 350 - DN	25 PVT	-	1046475	
FM 350 - DN	25 SST	without valve	1046476	
FM 350 - DN 2	25 SST	with valve	1046477	

Multi-layer Safety Diaphragm (Standard)

	Order no.
FM 130 (type: 16050, 16090, 16130)	1029771
FM 350 (type: 07120, 07220, 04350)	1033422

Metering Diaphragm (Old Version)

	Order no.	
Sigma with FM 130 identity code: Type 16050, 16090, 16130	792495	
Sigma with FM 350 identity code: Type 07120, 07220, 04350	792496	

Spare Parts Kits for Integrated Relief Valve

Consisting of two compression springs made from Hastelloy C and four FKM-A and EPDM O-rings each

	For material	Seals	Order no.
ETS overflow valve 4 bar	PVT/SST	FKM-A/EPDM	1031199
ETS overflow valve 7 bar	PVT/SST	FKM-A/EPDM	1031200
ETS overflow valve 10 bar	PVT	FKM-A/EPDM	1031201
ETS overflow valve 16 bar	SST	FKM-A/EPDM	1031203

Gear Oil

	Volume	Order no.
	I	
Mobilgear 634 VG 460 gear oil	1	1004542

Accessories

- Foot Valves for Motor Driven Metering Pumps see page → 1-46
- Injection Valves for Motor Driven Metering Pumps see page → 1-49
- \blacksquare Connectors and Seals for Motor Driven Metering Pumps see page \rightarrow 1-75
- Suction Lances, Suction Assemblies and Level Switches for Motor Driven Metering Pumps see page → 1-64
- Speed Controllers see page → 1-82
- Thermal metering monitor see page → 1-92

Spare Parts

■ Custom Accessories See page → 1-89

Motor Driven Metering Pumps

Motor Driven Metering Pump Sigma/ 2 (Control Type)

Motor Driven Metering Pump Sigma/ 2 (Control Type)

The intelligent pump for safe and reliable use in many applications.

Capacity range 61 - 353 l/h, 16 - 4 bar

The Sigma/ 2 Control is a robust motor-driven diaphragm metering pump with a patented multi-layer safety diaphragm for outstanding process safety and reliability. The integrated automatic overload shutdown offers further protection for the pump. Removable operating unit and adjustable metering profiles enable the versatile use of this pump.

The Sigma/ 2 Control diaphragm metering pump together with pumps of type Sigma/ 1 Control and Sigma/ 3 Control represent an integrated product range. They cover the capacity range from 17 to 1,040 l/h. The entire Sigma Control product range is equipped with intelligent features to provide a high level of operating convenience, safety and efficiency. The pump product range has a removable operating unit and adjustable metering profiles to ensure optimum metering results.

Your benefits

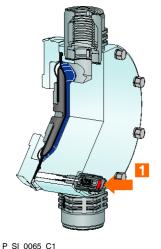
Excellent process safety and reliability:

- In the event of an accident, the feed chemical does not escape to the outside nor into the pump's power end, thanks to the patented multi-layer safety diaphragm with optical (optionally electric) signalling
- Integrated overload shut-down in the pump control to protect the pump from overloading and thus significantly reduced pressure surges caused by blockages.
- Automatic, integrated overload shut-down to protect the pump and bleed option during the suction process to ensure reliable operation

Flexible adaptation to the process:

- Detachable operating unit with large illuminated LC display for outstanding user convenience
- Metering profiles for optimum metering results
- The entire Sigma product range is available as standard in a "Physiologically safe in respect of wetted materials" design and with electro-polished stainless steel dosing head and EHEDG certification for applications with strict hygiene requirements
- Different control options are available, as well as easy connection to bus-networked systems by
- Customised designs are available on request

Technical Details


- Stroke length: 5 mm.
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 1% increments (optionally with actuator or control drive)
- Metering reproducibility is better than ± 2% in the 30 100% stroke length adjustment range under defined conditions and with correct installation
- Wetted materials: PVDF, stainless steel 1.4571/1.4404, special materials on request
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with diaphragm rupture warning system via a contact)
- Integrated automatic overload switch-off as a pump protection function
- Integrated hydraulic relief and bleed valve
- Removable operating unit with large illuminated LC display
- Metering profiles for optimum metering results
- Power supply: 1-phase, $100 230 \text{ V} \pm 10\%$, $240 \text{ V} \pm 6\%$, 50/60 Hz (220 W)
- Degree of protection IP 65
- Highly rigid fibreglass-reinforced plastic housing with excellent chemical resistance
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps.

Field of application

- Volume-proportional addition of chemicals in water treatment, e.g. sodium-calcium hypochlorite for the disinfection of potable water
- Neutralisation in waste water treatment
- Time-controlled addition of chemicals in the cooling water circuit
- Pulse-controlled metering in the bottling of different volumes e.g. glycerin filling of manometers

P SI 0131 SW Sigma/ 2 control type

1: Diaphragm rupture sensor

Motor Driven Metering Pumps

1.5 Motor Driven Metering Pump Sigma/ 2 (Control Type)

P_SI_0099_SW3

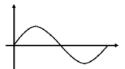
Detachable Operating Unit (HMI)

The operating unit (HMI) can be attached directly to the metering pump or mounted on the wall alongside the pump. This provides the operator with a range of options for the integration of a metering system in the overall system that it is readily accessible and easy to use. Moreover the removable operating unit offers additional protection against unauthorised operation of the metering pump or against modification of the pump settings. The operating unit can, for example, be completely removed for project applications.

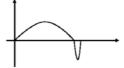
Individual functions of the metering pump can be easily selected and adjusted with five program keys. An illuminated LCD display provides information about the relevant operating status. LEDs on the operating unit and the control unit indicate the active pump functions or the pump status.

Overload switch-off

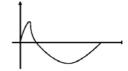
The distinguishing feature of the new Sigma product range is its automatic overload shut-down to protect the pump. The motion and speed profiles are detected and evaluated together with the energy demand. This data enables the energy supply to be limited to the amount of energy actually needed. In addition, an analysis of the energy requirement leads to automatic monitoring of the metering pump in the event of an overload situation. This facilitates the internal overload shut-down, offering additional protection for the motor driven metering pump.


Metering Profiles

Metering profiles guarantee optimum metering results by adapting the metering behaviour of the metering pump to the application or chemical used.


The stroke motion of the displacement body is continually recorded and regulated so that the stroke is made in line with the desired metering profile. The pump can be operated in normal mode (Diagram 1), with optimised discharge stroke (Diagram 2) or with optimised suction stroke (Diagram 3). Three typical metering profiles are shown schematically with the behaviour over time.

In normal operating mode, the time behaviour for the suction stroke and the discharge stroke is similar (Diagram 1). In the mode with optimised discharge stroke (Diagram 2), the discharge stroke is lengthened while the suction stroke is made as quickly as possible. This set-up is suited to applications which require optimum mixing and as continuous a mixing of chemicals as possible, for example.


In the mode with the optimised suction stroke (diagram 3), the suction stroke is carried out as slowly as possible, permitting precise and trouble-free metering of viscous and gaseous media. Select this setting to minimise the NPSH value as well.

P_SI_0102_SW
Diagram 1: Discharge stroke, suction stroke equal

P_SI_0103_SW
Diagram 2: Long discharge stroke, short suction stroke

P_SI_0104_SW
Diagram 3: Short discharge stroke, long suction stroke

"Physiologically Safe (FDA) in Respect of Wetted Materials" Version

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

FDA guidelines:

- Material PTFE: FDA No. 21 CFR § 177.1550
- Material PVDF: FDA No. 21 CFR § 177.2510

Available for material version PVT and SST.

Identity code example: S2CbH16050PVTS01 F UA10S0DE

Motor Driven Metering Pumps

1.5 Motor Driven Metering Pump Sigma/ 2 (Control Type)

Technical Data

Type S2Cb	Deli	•	ate at max. k pressure	Max. stroke rate	•	rate at max. ack pressure	Suction lift	Perm. pre- pressure suction side	Connection, suction/ discharge side	Shipping weight
	bar	l/h	ml/stroke	Strokes/min	psi	gph (US)	m WC	bar	G-DN	kg
16050 PVT	10	61	11.4	90	145	16.1	7	2	1–15	15
16050 SST	16	56	10.4	90	232	14.8	7	2	1–15	20
16090 PVT	10	109	11.4	160	145	28.8	7	2	1–15	15
16090 SST	16	99	10.3	160	232	26.2	7	2	1–15	20
16130 PVT	10	131	10.9	200	145	34.6	7	2	1–15	15
16130 SST	16	129	10.9	200	232	34.1	7	2	1–15	20
07120 PVT	7	150	27.4	90	102	39.6	5	1	1 1/2–25	16
07120 SST	7	150	27.4	90	102	39.6	5	1	1 1/2–25	24
07220 PVT	7	271	27.7	160	102	71.6	5	1	1 1/2–25	16
07220 SST	7	271	27.7	160	102	71.6	5	1	1 1/2–25	24
04350 PVT	4	353	29.4	200	58	93.3	5	1	1 1/2–25	16
04350 SST	4	353	29.4	200	58	93.3	5	1	1 1/2–25	24

With Sigma types 07120, 07220 and 04350, the dosing head is fitted with DN 25 (G 1 1/2) valves. As DN 20 is generally sufficient for these types of pipes (see technical data, suction/discharge side connector), the connector parts that can be ordered under the identity code (e.g. inserts) are already reduced to DN 20, i.e. piping and accessories can be installed in DN 20.

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls	Integral relief valve
PVT	PVDF	PVDF	PTFE/PTFE	Ceramic/glass*	PVDF/FKM or EPDM
SST	Stainless steel 1.4404	Stainless steel 1.4581	PTFE/PTFE	Stainless steel 1.4404	Stainless steel/FKM or EPDM

^{*} With 07120, 07220, 04350

With "F" design - "physiologically safe - FDA" the ball seat is made of PVDF

Motor Data

Identity code specification		Power supply			Remarks
U	1-phase, IP 65	100 - 230 V ±10 % / 240 V ±6 %	50/60 Hz	220 W	

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IE3 standard in compliance with the Ecodesign Directive 2009/125/EC.

Sigma/ 2 Control Type (S2Cb)

Hampower end, disphragm	S2Cb	Drive t	ype															
Pump type				ower en	d, diaph	ragm												
					-,													
16050 16 56 16130 16 129 07220 7 271			rump		171-				170				174					
1699 16 99											.=							
Dosing head material PV PVP (max 10 bar) SS Stainless steel Seal material T PTE seal Displacement body S Multi-layer safety disphragm with optical rupture indicator A Multi				-														
PVF FVDF (max. 10 bar)			16090	16	99		07120	7	150		04350	4	353					
SS Stainless steel Sal material PTTE seal				Dosing	head i	materia	l											
Seal material T				PV	PVDF ((max. 10) bar)											
Seal material				SS	Stainle	ss steel	,											
Pite Seal Displacement body S Multi-layer safety diaphragm with optical rupture indicator Multi-layer safety diaphragm with electrical signal Dosing head version O no valve spring (standard) 1 with 2 valve spring (standard) 1 with 2 valve spring (standard) 1 with 2 valve spring statelloy C; 0.1 bar with bleed valve, FKM seal, volt valve spring 3 with bleed valve, FKM seal, volt valve spring 3 with relief valve, FFM seal, volt valve spring 5 with relief valve, FFM seal, volt valve springs 7 with relief valve, FFM seal, volt valve springs 9 with bleed valve, EFM seal, volt valve springs 9 with pleed valve, EFM seal, volt valve spring 9 with bleed valve, EFM seal, volt valve spring 9 with pleed valve, EFM seal, valve spring 9 with pleed valve spring 9 with pleed valve spring 9 with pleed																		
Displacement body S Multi-layer safety disphragm with optical rupture indicator A Multi-layer safety disphragm with electrical signal Dosing head version 0 no valve spring (standard) 1 with 2 valve spring (standard) 1 with 2 valve spring, standard) 1 with 2 valve spring, standard) 1 with 2 valve spring, standard) 1 with 1 valve spring, standard) with bleed valve, FKM seal, valve valve spring vith 1 valve, FKM seal, with valve springs with bleed valve, FFM seal, with valve springs with bleed valve, EPDM seal, no valve springs with bleed valve, EPDM seal, valve, EPDM seal, valve, EPDM seal, with valve spring with bleed valve, EPDM seal, with valve spring with valve spring with bleed valve, EPDM seal, with valve spring							soal.											
Multi-layer safety disphragm with optical rupture indicator					'													
Multi-layer safety disphragm with electrical signal Dosing head version 0																		
Dosing head version 0 0 no valve spring (standard) 1 with 2 valve springs, Hastelloy C; 0.1 bar with 2 valve springs, Hastelloy C; 0.1 bar with 2 valve springs, with beled valve, FKM seal, no valve spring with bread valve, FKM seal, no valve springs with relief valve, FPM seal, with va								-		•				ator				
						Α	Multi-la	ayer sate	ety diaph	nragm w	ith elect	rical sig	nal					
1							Dosing											
Version With Development Version Versi							0	no valv	e spring	ı (standa	ard)							
with bleed valve, FFMs and, no valve springs with relief valve, FFMs and, no valve springs with relief valve, FFMs and, no valve springs with relief valve, EPDM seal, no valve springs with relief valve, EPDM seal, with valve springs with bleed valve, EPDM seal, with valve springs with bleed valve, EPDM seal, with valve springs with bleed valve, EPDM seal, with valve spring with bleed valve, EPDM seal, with valve springs with bleed valve, EPDM seal, woth valve springs with bleed valve, EPDM seal, woth valve springs with bleed valve, EPDM seal, woth valve springs with bleed valve, EPDM seal, with valve springs with bleed valve, EPDM seal, woth valve springs wi							1	with 2	valve sp	rings, H	astelloy	C; 0.1 b	ar					
with bleed valve, FFM seal, with valve spring with relief valve, EPM seal, no valve springs with relief valve, EPM seal, no valve springs with relief valve, EPM seal, with valve springs with relief valve, EPM seal, with valve springs with bleed valve, EPDM seal, with valve springs with bleed valve, EPDM seal, with valve springs with bleed valve, EPDM seal, with valve spring with bleed valve, EPDM seal, with valve springs with bleed valve, EPDM seal, work seal, with valve springs with bleed valve, EPDM seal, wat valve springs with valve springs with bleed valve, EPDM seal, wat valve springs with valve springs ### Union nut and stainless steel valve ### Uni							2	with bl	eed valv	e, FKM	seal, no	valve s	pring					
with relief valve, FPM seal, no valve springs with relief valve, FPM seal, with valve springs with relief valve, EPDM seal, no valve springs with relief valve, EPDM seal, no valve springs with relief valve, EPDM seal, no valve spring with bleed valve, EPDM seal, no valve spring with bleed valve, EPDM seal, no valve spring with bleed valve, EPDM seal, no valve spring With valve spring Union nut and PVDF tube nozzle Union nut and PVD relief 1 Union nut and PVDF tube nozzle Union nut and PVDF insert 2 Union nut and PVDF insert 3 Union nut and PVDF insert 9 Union nut and stainless steel tube nozzle Wersion 0 Without ProMinent® Logo Without ProMinent® Logo Without ProMinent® Logo Without ProMinent® Logo 1 I ph. 100 – 230 V ±6%, 50/60 Hz, 220 W Cable and plug A 2 m Europe B 2 m Swins D 2 m USA Relay 0 No relay 1 Fault indicating relay (24 V, 100 mA) + pacing relay (25							3	with bl	eed valv	e. FKM	seal. wit	h valve	sprina					
with relief valve, EPDM seal, with valve springs with relief valve, EPDM seal, no valve springs with relief valve, EPDM seal, no valve springs with relief valve, EPDM seal, with valve springs with bised valve, EPDM seal, with valve spring with bised valve, EPDM seal, with valve spring Hydraulic connector 1 Union nut and PVDF lisert 2 Union nut and PVDF lisert 3 Union nut and PVDF lisert 4 Union nut and PVDF lisert 5 Union nut and PVDF lisert 6 Union nut and PVDF lisert 9 Union nut and PVDF lisers tell union nut and stainless steel live nozzle Union nut and PVDF lisert 9 Union nut and PVDF lisers tell union nut and stainless steel welding sleeve Version 0 With ProMinent® Logo Without ProMinent® Logo 1 Without ProMinent® Logo F with physiological safety (FDA) in respect of wetted materials Electric power supply 1 Union nut and PVDF lisers 2 Union nut and PVDF lisers 1 Plant lindicating relay (23 V ±6%, 50 60 Hz, 220 W Cable and plug A 2 m Europe D 2 m USA Relay No relay 1 Fault indicating relay (23 V, 10 mA) + pacing relay (24 V, 100 mA) 8 0/4-20 mA analogue output + fault indicating / pacing relay (24 V - 100 mA) Control versions 0 Manual + external contact with pulse control 1 As 0 + analogue unterline profiles 6 As 1 + PROPIBLUS® PD interface, M 12 7 as 1 + CANopen (CIA 402, M12 plug), pump without operating unit (HMI) Control versions Overload switch-off with overload switch-off with overload switch-off with overload switch-off 0 without overl							4**											
with relief valve, EPDM seal, no valve springs with bleed valve, EPDM seal, with valve spring with bleed valve, EPDM seal, with valve spring with bleed valve, EPDM seal, with valve spring Hydraulic connector 0 Standard connector 1 Union nut and PVDF insert 7 Union nut and stainless steel** insert 1 Union nut and PVDF insert 8 Union nut and stainless steel tube nozzle 2 Union nut and PPD insert 9 Union nut and stainless steel welding sleeve Version 0 With ProMinent* Logo 1 Without ProMinent* Logo 1 Without ProMinent* Logo 1 With prominent* Logo 1 Province Power supply 1 ph, 100 – 230 V ± f9%, 50/60 Hz, 220 W Cable and plug A 2 m Europe C 2 m Australia B 2 m Swiss D 2 m USA Relay Relay 0 No relay 1 Fault indicating relay (23 V, 100 mA) + pacing relay (24 V, 100 mA) Relay 0 No relay 1 Fault indicating relay (24 V, 100 mA) + pacing relay (24 V, 100 mA) Control versions 0 Manual + external contact with pulse control 1 A 3 0 + analogue + metering profiles 6 As 1 + PROFIBUS® DP interface, M 12 7 as 1 + CANtopen (CiA 402, M12 plug), pump without operating unit (HMI) EVALUATION OF THE PROFISE													_					
with relief valve, EPDM seal, with valve springs with bleed valve, EPDM seal, vith valve spring with bleed valve, EPDM seal, with valve spring Hydraulic connector 0 Standard connection 4 Union nut and stainless steel** insert Union nut and PVID seal, with valve spring Hydraulic connector 1 Union nut and PVID seal Valve nozzle 1 Union nut and PVID seal Valve nozzle 2 Union nut and PVID seal Valve nozzle 1 Union nut and PVID seal Valve nozzle 1 Union nut and Stainless steel tube nozzle 1 Union nut and PVID seal Valve nozzle 1 Union nut and stainless steel welding sleeve Version Version 0 With ProMinent® Logo with physiological safety (FDA) in respect of wetted materials Electric power supply U 1 ph, 100 –230 v ± 10%, 240 v ±6%, 50/60 Hz, 220 W Cable and plug A 2 m Europe C 2 m Australia B 2 m Swiss D 2 m UsA Relay Novel Valve Novel Val							-											
with bleed valve, EPDM seal, my valve spring with bleed valve, EPDM seal, with valve spring Hydraulic connector 1							-							•				
with bleed valve, EPDM seal, with valve spring Hydraulic connection 0 Standard connection 1 Union nut and PVDF insert 7 Union nut and PVDF tube nozzle 2 Union nut and PVDF insert 8 Union nut and stainless steel tube nozzle 3 Union nut and PVDF insert 9 Union nut and stainless steet lube nozzle Wersion 0 With ProMinent® Logo 1 Without ProMinent® Logo 1 Inph. 100 - 230 V ±10%, 240 V ±6%, 50/60 Hz, 220 W Cable and plug A 2 m Europe C 2 m Australia B 2 m Swiss D 2 m USA Relay 0 No relay 1 Fault indicating relay (230 V, 8 A) 3 Fault indicating relay (24 V, 100 mA) + pacing relay (24 V, 100 mA) 0 No relay 1 Fault indicating relay (24 V, 100 mA) + pacing relay (24 V, 100 mA) 0 No relay 1 Fault indicating relay (24 V, 100 mA) + pacing relay (24 V, 100 mA) 0 No relay 1 Fault indicating relay (24 V, 100 mA) + pacing relay (24 V, 100 mA) 0 No relay 1 Fault indicating relay (24 V, 100 mA) + pacing relay (24 V, 100 mA) 0 No relay 1 Fault indicating relay (24 V, 100 mA) + pacing relay (24 V, 100 mA) 0 No relay 1 Fault indicating relay (26 V, 100 mA) + pacing relay (24 V, 100 mA) 0 No relay 1 Fault indicating relay (26 V, 100 mA) + pacing relay (24 V, 100 mA) 0 No relay 1 Fault indicating relay (26 V, 100 mA) + pacing relay (24 V, 100 mA) 0 No relay 1 Fault indicating relay (26 V, 100 mA) + pacing relay (24 V, 100 mA) 0 No relay 1 Fault indicating relay (26 V, 100 mA) + pacing relay (26 V V - 100 mA) 0 No relay 1 Fault indicating relay (26 V V, 100 mA) + pacing relay (26 V V - 100 mA) 0 No relay 1 Fault indicating relay (26 V V, 100 mA) + pacing relay (26 V V - 100 mA) 0 No relay 1 Fault indicating relay (26 V V, 100 mA) + pacing relay (26 V V, 100 mA) 0 No relay 1 Fault indicating relay (26 V V, 100 mA) + pacing relay (26 V V, 100 mA) 0 No relay 1 Fault indicating relay (26 V V, 100 mA) 0 No relay 1 Fault indicating relay (26 V V, 100 mA) 0 No relay 1 Fault indicating relay (26 V V, 100 mA) 1 As 0 + analogue output + fault indicating relay (26 V V, 100 mA) 1 As 0 + analogue output + fault indicating relay (26 V V, 100 mA)							1 -				,			S				
Hydraulic connector 0 Standard connection 1 Union nut and stainless steel*** insert Union nut and PVD insert 7 Union nut and PVDF tube nozzle 2 Union nut and PPD insert 8 Union nut and PVDF tube nozzle 2 Union nut and PPD insert 9 Union nut and stainless steel tube nozzle Union nut and PVDF insert 9 Union nut and stainless steel welding sleeve Version 0 With ProMinent® Logo 1 Without ProMinent® Logo 1 Without ProMinent® Logo 2 Materialia Electric power supply U 1 ph, 100 - 230 V ±10%, 240 V ±6%, 50/60 Hz, 220 W Cable and plug A 2 m Europe C 2 m Australia B 2 m Swiss D 2 m USA Relay No relay Fault indicating relay (24 V, 100 mA) Fault indicating relay (24 V, 100 mA) Fault indicating relay (24 V, 100 mA) No relay Fault indicating relay (24 V, 100 mA) Control versions 0 Maularl + external contact with pulse control 1 As 0 + analogue + metering profiles 6 As 1 + PROFIBUS® DP interface, M 12 7 as 1 + CANopen (CiA 402, M12 plug), pump without operating unit (HMI) **** Version 0 Without overload switch-off 0 without ov																		
No							9	with bl	eed valv	e, EPDN	∕l seal, v	vith valv	e spring	9				
Language								Hydra	ulic cor	nector								
Part								0	Standa	rd conn	ection			4	Union	nut and	stainless steel*** insert	
Union nut and PVDF insert								1	Union i	nut and	PVC ins	ert		7	Union	nut and	PVDF tube nozzle	
Union nut and PVDF insert								2	Union i	nut and	PP inser	t		8	Union	nut and	stainless steel tube nozzle	
Version															Union	nut and	stainless steel welding sleeve	
Cangular Company Com														1	10		oraning order of	
The image The											·oMinon	t® Logo						
F with physiological safety (FDA) in respect of wetted materials Electric power supply U 1 ph, 100 - 230 V ±10%, 240 V ±6%, 50/60 Hz, 220 W Cable and plug A 2 m Europe C 2 m Australia 2 m Swiss D 2 m USA Relay 0 No relay 1 Fault indicating relay (24 V, 100 mA) + pacing relay (24 V, 100 mA) + pacing relay (24 V, 100 mA) + pacing relay (24 V, 100 mA) Equivalent to the properties As 0 + analogue output + fault indicating / pacing relay (24 V - 100 mA) Control versions 0 Manual + external contact with pulse control 1 As 0 + analogue + metering profiles 6 As 1 + PROFIBUS® DP interface, M 12 7 as 1 + CANopen (Cla 402, M12 plug), pump without operating unit (HMI) ***** Overload switch-off 0 without overload switch-off with overload switch-off 1 mith overload switch-off Operating unit (HMI) S HMI (0.5 m cable) 1 HMI + 2 m cable 2 HMI + 5 m cable 2 HMI + 5 m cable 3 HMI + 10 m cable 3 HMI + 10 m cable 1 HMI + 2 m cable 3 HMI + 10 m cable 3 HMI + 10 m cable 4 Access code 0 0 without access control 0 without access									-			•						
Cable and plug													•					
U									F) in resp	ect of w	vettea ma	ateriais	
Cable and plug A 2 m Europe C 2 m Australia B 2 m USA Relay 0 No relay 1 Fault indicating relay (230 V, 8 A) 3 Fault indicating relay (24 V, 100 mA) + pacing relay (24 V, 100 mA) 8 0/4-20 mA analogue output + fault indicating / pacing relay (24 V - 100 mA) Control versions 0 Manual + external contact with pulse control 1 As 0 + analogue + metering profiles 6 As 1 + PROFIBUS® DP interface, M 12 7 as 1 + CANopen (CiA 402, M12 plug), pump without operating unit (HMI) Overload switch-off 0 without overload switch-off with overload switch-off Operating unit (HMI) S HMI (0.5 m cable) 1 HMI + 2 m cable ES Spanish FR French IT Italian NL Dutch PL Polish											c powe	r suppl	У					
A 2 m Europe C 2 m Australia 2 m Swiss D 2 m USA Relay										U	1 ph, 1	00 – 230	0 V ±10	%, 240 \	ñ6%,	50/60 Hz	z, 220 W	
B 2 m Swiss D 2 m USA Relay 0 No relay 1 Fault indicating relay (230 V, 8 A) 3 Fault indicating relay (24 V, 100 mA) + pacing relay (24 V, 100 mA) 6 Wanual + external contact with pulse control 1 As 0 + analogue + metering profiles 6 As 1 + PROFIBUS® DP interface, M 12 7 as 1 + CANopen (CiA 402, M12 plug), pump without operating unit (HMI) 1 with overload switch-off 0 without overload switch-off 1 with overload switch-off 1 HMI + 2 m cable S Spanish FR French IT Italian NL Dutch PL Polish B Worelay 1 Fault indicating relay (24 V, 100 mA) 1 As 0 + Analogue output + fault indicating / pacing relay (24 V, 100 mA) 1 As 0 + Analogue output + fault indicating / pacing relay (24 V, 100 mA) 1 As 0 + Analogue output + fault indicating / pacing relay (24 V, 100 mA) 1 As 0 + Analogue output + fault indicating relay (24 V, 100 mA) 1 As 0 + Analogue output + fault indicating relay (24 V, 100 mA) 1 As 0 + Analogue output + fault indicating relay (24 V, 100 mA) 1 As 0 + Analogue output + fault indicating relay (24 V, 100 mA) 1 As 0 + Analogue output + fault indicating relay (24 V, 100 mA) 1 As 0 + Analogue output + fault indicating relay (24 V, 100 mA) 1 As 0 + Analogue output + fault indicating relay (24 V, 100 mA) 1 As 0 + Analogue output + fault indicating relay (24 V, 100 mA) 1 As 0 + Analogue output + fault indicating relay (24 V, 100 mA) 2 Access code 1 As 1 + PROFIBUS® DP interface, M 12 2 as 1 + CANopen (CiA 402, M12 plug), pump without operating unit (HMI) 3 HMI + 10 m cable 3 HMI + 10 m cable 4 HMI + 2 m cable 5 Spanish 7 HMI + 2 m cable 7 HMI + 5 m cable 8 HMI + 10 m cable 9 HMI + 10 m cable 9 HMI + 10 m cable 1 HMI + 2 m cable 9 HMI + 10 m cable 1 HMI + 2 m cable 9 HMI + 10 m cable 1 HMI + 2 m cable 9 HMI + 10 m cable 1 HMI + 2 m cable 9 HMI + 10 m cable 1 HMI + 2 m cable 9 HMI + 10 m cable 1 HMI + 2 m cable 9 HMI + 10 m cable 1 HMI + 2 m cable 9 HMI + 10 m cable 1 HMI + 2 m cable 9 HMI + 10 m cable 1 HMI + 2 m cable 9 HMI + 10 m cable 1 HMI + 2 m cable 9 HMI + 10 m cable 1 HMI + 2 m cable 9 HMI + 10 m cable 1											Cable	and plu	ıg					
Relay No relay Fault indicating relay (230 V, 8 A) Fault indicating relay (24 V, 100 mA) + pacing relay (24 V, 100 mA) Relay No relay Fault indicating relay (24 V, 100 mA) + pacing relay (24 V, 100 mA) Control versions Manual + external contact with pulse control As 0 + analogue + metering profiles As 1 + PROFIBUS® DP interface, M 12 as 1 + CANopen (CiA 402, M12 plug), pump without operating unit (HMI) Coverload switch-off Without overload switch-off With overload switch-off With overload switch-off Degrating unit (HMI) S HMI (0.5 m cable) S Spanish S HMI (0.5 m cable) S HMI + 5 m cable S Spanish FR French IT Italian NL Dutch PL Polish											Α	2 m Eu	rope	С	2 m Aı	ustralia		
Document Pault indicating relay (230 V, 8 A) Fault indicating relay (24 V, 100 mA) Pault indicating / pacing relay (24 V - 100 mA) Control versions On Manual + external contact with pulse control 1											В	2 m Sv	viss	D	2 m U	SA		
Document Pault indicating relay (230 V, 8 A) Fault indicating relay (24 V, 100 mA) Pault indicating / pacing relay (24 V - 100 mA) Control versions On Manual + external contact with pulse control 1																		
Fault indicating relay (23 V, 8 A) Fault indicating relay (24 V, 100 mA) + pacing relay (24 V, 100 mA) Ratificating relay (24 V, 100 mA) + pacing relay (24 V, 100 mA) O/4-20 mA analogue output + fault indicating / pacing relay (24 V - 100 mA) Control versions													No rela	av				
Fault indicating relay (24 V, 100 mA) + pacing relay (24 V, 100 mA) 8														-	a rolay ((230 V 8	Δ)	
B 0/4-20 mA analogue output + fault indicating / pacing relay (24 V - 100 mA) Control versions 0 Manual + external contact with pulse control 1 As 0 + analogue + metering profiles 6 As 1 + PROFIBUS® DP interface, M 12 7 as 1 + CANopen (CiA 402, M12 plug), pump without operating unit (HMI) ***** Overload switch-off 0 without overload switch-off 1 with overload switch-off 1 with overload switch-off S HMI (0.5 m cable) 1 HMI + 2 m cable 2 HMI + 5 m cable 2 HMI + 5 m cable 3 HMI + 10 m cable 3 HMI + 10 m cable X without operating unit (HMI) NL Dutch PL Polish Dutch PL Polish Dutch Owerload switch-off Dutch Access code 0 without access control Owerload switch-off Owerload												1 -						mΔ)
(24 V - 100 mA) Control versions 0 Manual + external contact with pulse control 1 As 0 + analogue + metering profiles 6 As 1 + PROFIBUS® DP interface, M 12 7 as 1 + CANopen (CiA 402, M12 plug), pump without operating unit (HMI)**** Overload switch-off 0 without overload switch-off 1 with overload switch-off 0 without overload switch-off 1 with overload switch-off 1 Templase Operating unit (HMI) S HMI (0.5 m cable) EN English ES Spanish EN English ES Spanish EN French EN English EN																	,	111/
Control versions 0												0				output + i	auit indicating / pacing relay	
Decorating unit (HMI) Second Seco													`		,			
As 0 + analogue + metering profiles As 1 + PROFIBUS® DP interface, M 12 as 1 + CANopen (CiA 402, M12 plug), pump without operating unit (HMI) ***** Overload switch-off 0 without overload switch-off with overload switch-off 1 with overload switch-off 1 with overload switch-off 0 with overload switch-off 1 with overload switch-off 1 with overload switch-off 0 with overload switch-off 0 with overload switch-off 1 with overload switch-off 0 with overload switch-off 1 with overload switch-off 0 with overload switch-off 1 with overload switch-off 1 with overload switch-off 0 with overload switch-off 1 with overload switch-off 0 with overload switch-off 1 with overload switch-off 1 with overload switch-off 0 with overload switch-off 0 with overload switch-off 1 with overload switch-off 0 with																rnol con	toot with pulse central	
As 1 + PROFIBUS® DP interface, M 12 as 1 + CANopen (CiA 402, M12 plug), pump without operating unit (HMI) ***** Overload switch-off 0 without overload switch-off 1 with ove													-				•	
Total Control CiA 402, M12 plug), pump without operating unit (HMI) ***** Coverload switch-off Owithout overload switch-off With overload switch-off With overload switch-off Operating unit (HMI)													1		_		0 1	
operating unit (HMI) **** Overload switch-off 0 without overload switch-off 1 with overload switch-off Operating unit (HMI) S HMI (0.5 m cable) EN English ES Spanish FR French IT Italian NL Dutch PL Polish operating unit (HMI) X without overload switch-off 1 with overload switch-off 1 with overload switch-off 0 without overload switch-off 1 with overload switch-off 1 with overload switch-off 2 HMI (0.5 m cable) 1 HMI + 2 m cable 2 HMI + 5 m cable 3 HMI + 10 m cable X without operating unit (HMI) Access code 0 without access control																		
Coverload switch-off 0 without overload switch-off 1 with overload switch-off 1 with overload switch-off 1 with overload switch-off 1 with overload switch-off Operating unit (HMI) S HMI (0.5 m cable)													7	as 1 +	CANop	en (CiA	402, M12 plug), pump without	
Language DE German EN English ES Spanish FR French IT Italian NL Dutch PL Polish O without overload switch-off with over																	**	
Language DE German EN English ES Spanish FR French IT Italian NL Dutch PL Polish 1 with overload switch-off Operating unit (HMI) S HMI (0.5 m cable) 1 HMI + 2 m cable 2 HMI + 5 m cable 3 HMI + 10 m cable X without operating unit (HMI) Access code 0 without access control														Overle	oad swi	itch-off		
Canguage														0	withou	ut overloa	ad switch-off	
DE German S HMI (0.5 m cable)														1	with o	verload s	switch-off	
DE German S HMI (0.5 m cable)	Langu	age			1						1				Opera	ating uni	it (HMI)	
EN English ES Spanish FR French IT Italian NL Dutch PL Polish In English It HMI + 2 m cable It HMI + 5 m cable It HMI + 5 m cable It HMI + 10 m cable It Without operating unit (HMI) Access code It Without access control			n															
ES Spanish FR French IT Italian NL Dutch PL Polish ES Spanish FR French IT Om cable X without operating unit (HMI) Access code 0 without access control					1						1						•	
FR French IT Italian NL Dutch PL Polish ST HMI + 10 m cable X without operating unit (HMI) Access code 0 without access control		_													1 -			
IT Italian X without operating unit (HMI) Access code 0 without access control																		
NL Dutch PL Polish Access code 0 without access control																		
PL Polish 0 without access control															Х			
		Dutch														Acces	s code	
PT Portuguese 1 with access control	PL	Polish														0	without access control	
	PT	Portua	uese													1	with access control	

^{* 10} bar with PVDF version.

^{****} An HMI order no. 1042549 is required for manual operation, e.g. with the failure of the CAN bus EHEDG-certified (European Hygienic Eng. Design Group) electropolished stainless steel dosing heads (< Ra 0.8) type EL class I are available on request.

^{**} Standard with tube nozzle in the bypass. Threaded connection on request.

^{***} Internal thread of the insert SS DN15-Rp 1/2, DN25/20-G 3/4

1.5.2 **Spare Parts**

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with PVT material version:

- 1 diaphragm
- 1 suction valve assembly
- 1 discharge valve assembly
- 2 valve balls
- 1 elastomer sealing set (EPDM, FKM-B)
- 2 ball seat discs
- 4 composite seals

Scope of delivery with SST material version:

- 1 diaphragm
- 2 valve balls
- 2 ball seat discs
- 4 composite seals

Spare Parts Kit for Sigma/ 2 for Design With Multi-layer Safety Diaphragm

(Applies to identity code types 16050, 16090, 16130, 12050, 12090 and 12130)

Liquid end	Materials in contact with the medium		Order no.
FM 130 - DN 15	PVT	_	1035951
FM 130 - DN 15	TTT	-	1077573
FM 130 - DN 15	SST	-	1035957
FM 130 - DN 15	SST	with 2 valves cpl.	1035954

(Applies to identity code types 07120, 07220 and 04350)

Liquid end	Materials in contact with the medium		Order no.
FM 350 - DN 25	PVT	-	1035953
FM 350 - DN 25	TTT	-	1077574
FM 350 - DN 25	SST	_	1035960
FM 350 - DN 25	SST	with 2 valves cpl.	1035959

Spare Parts Kits for Sigma/ 2 for Design With Old Diaphragm

(Applies to identity code types 16050, 16090, 16130, 12050, 12090 and 12130)

Liquid end	Materials in contact with the medium		Order no.
FM 130 - DN 15	PVT	-	740324
FM 130 - DN 15	SST	-	740326
FM 130 - DN 15	SST	with 2 valves cpl.	740328

(Applies to identity code types 07120, 07220 and 04350)

Liquid end	Materials in contact with the medium		Order no.
FM 350 - DN 25	PVT	-	740325
FM 350 - DN 25	SST	-	740327
FM 350 - DN 25	SST	with 2 valves cpl.	740329

Spare Parts Kits for Sigma/ 2 With FDA Design (Physiologically Safe)

(Applies to identity code types 16050, 16090, 16130, 12050, 12090 and 12130)

Liquid end	Materials in contact with the medium		Order no.
FM 130 - DN 15	PVT	-	1046472
FM 130 - DN 15	SST	without valve	1046473
FM 130 - DN 15	SST	with valve	1046474

(Applies to identity code types 07120, 07220 and 04350)

Liquid end	Materials in contact with the medium		Order no.
FM 350 - DN 25	PVT	-	1046475
FM 350 - DN 25	SST	without valve	1046476
FM 350 - DN 25	SST	with valve	1046477

Multi-layer Safety Diaphragm (Standard)

	Order no.
FM 130 (type: 16050, 16090, 16130)	1029771
FM 350 (type: 07120, 07220, 04350)	1033422

Metering Diaphragm (Old Version)

	Order no.
Sigma with FM 130 identity code: Type 16050, 16090, 16130	792495
Sigma with FM 350 identity code: Type 07120, 07220, 04350	792496

Spare Parts Kit for Integrated Relief Valve (S2Ca, S2Cb)

Consisting of two compression springs made from Hastelloy C and four FKM-A and EPDM O-rings each

	For material	Seals	Order no.
ETS overflow valve 4 bar	PVT/SST	FKM-A/EPDM	1031199
ETS overflow valve 7 bar	PVT/SST	FKM-A/EPDM	1031200
ETS overflow valve 10 bar	PVT	FKM-A/EPDM	1031201
ETS overflow valve 16 bar	SST	FKM-A/EPDM	1031203

Gear Oil

	Volume	Order no.
	I	
Mobilgear 634 VG 460 gear oil	1	1004542

Spare Parts Kits for Integrated Bleed Valve (S2Cb)

Consisting of a compression spring made from Hastelloy C and four FKM-A and EPDM O-rings each For identity code specification "Dosing head version" with characteristic "2", "3", "8", "9"

	For material	Seals	Order no.		
ETS	PVT/SST	FKM-A/EPDM	1043785		

Motor Driven Metering Pumps

1.5 Motor Driven Metering Pump Sigma/ 2 (Control Type)

Protective Cowling for Operating Unit (HMI)

Protection of the operating unit (HMI) of Sigma metering pumps against contamination; made from transparent silicone plastic. For Sigma control types S1Cb / S2Cb / S3Cb.

	Order no.
Protective cowling for operating unit (S1Cb, S2Cb, S3Cb)	1036724

Wall Bracket for Operating Unit (HMI)

Wall bracket with operating lever for wall mounting of the operating unit (HMI) without any fittings. For Sigma control types S1Cb / S2Cb / S3Cb.

	Order no.
Wall bracket for operating unit (S1Cb, S2Cb, S3Cb)	1036683

Extension cable for operating unit (HMI)

	Order no.
Connecting cable - CAN M12 5-pole 1 m	1022139
Connecting cable - CAN M12 5-pole 2 m	1022140
Connecting cable - CAN M12 5-pole 5 m	1022141
Connecting cable - CAN M12 5-pin. 10 m*	1046383

Accessories of CANopen operation

An operating unit is needed for the manual operation of a CANopen pump.

	Order no.
Operating unit (HMI)	1042549

Accessories

- Foot Valves see page → 1-46
- Injection Valves see page → 1-49
- Connector Parts, Seals, Hoses see page → 1-75
- Suction Lances/Suction Assemblies see page → 1-64

Spare Parts

■ Custom Accessories See page → 1-89

1.6.1

Motor Driven Metering Pump Sigma/ 3 (Basic Type)

The robust pump for safe and reliable use

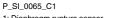
Capacity range 146 - 1,030 l/h, 12 - 4 bar

The patented multi-layer safety diaphragm for excellent process safety and reliability is just one feature of the extremely robust motor-driven diaphragm metering pump Sigma/3 Basic. It also offers a wide range of power end versions, such as three-phase or 1-phase AC motors, even for Exe and Exde areas with ATEX certification.

The Sigma/ 3 diaphragm metering pump together with pumps of type Sigma/ 1 and Sigma/ 2 represent an integrated product range. They cover the capacity range from 17 to 1,030 l/h, with a consistent operating concept, control concept and spare parts management. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Your benefits

Excellent process safety and reliability:

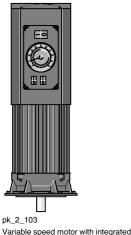

- In the event of an accident, the feed chemical does not escape to the outside nor into the pump's power end, thanks to the patented multi-layer safety diaphragm with optical (optionally electric) signalling
- Integrated relief valve protects the pump against overloading
- Reliable operation by bleed option during the suction process

Flexible adaptation to the process:

- The entire Sigma product range is available as standard in a "Physiologically safe in respect of wetted materials" design.
- Metering pumps with electro-polished stainless steel metering head and EHEDG certification enable them to be used in hygienically challenging applications
- Wide range of power end versions, also for use in Exe and Exde areas and different flange designs for the use of customised motors
- Customised designs are available on request

- Stroke length: 6 mm,
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 1% increments (optionally with actuator or control drive)
- Metering reproducibility is better than ± 2% with a 30-100% stroke length adjustment range under certain defined conditions and with proper installation.
- Wetted materials: PVDF, stainless steel 1.4571/1.4404, special materials on request
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with diaphragm rupture warning system via a contact)
- Integrated hydraulic relief and bleed valve
- A wide range of power end versions is available: Three-phase standard motor, 1-phase AC motor, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection IP 55 (optionally II2GEExelIT3, II2GEExdIICT4)
- Highly rigid fibreglass-reinforced plastic housing with excellent chemical resistance
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps.

1: Diaphragm rupture senso


P SI 0132 SW

Sigma/3

Field of application

- Volume-proportional addition of chemicals in water treatment, e.g. sodium-calcium hypochlorite for the disinfection of potable water
- Addition of chemicals depending on the measured value, e.g. metering of acid and alkali for pH neutralisation in waste water treatment
- Time-controlled addition of chemicals in the cooling water circuit
- Pulse-controlled metering in the bottling of different volumes e.g. glycerin filling of manometers

frequency converter

Sigma Basic Type Control Functions (S3Ba)

Stroke length actuator/controller

Actuator with stroke positioning motor for automatic stroke length adjustment. Setting time approx. 1 sec for 1 % stroke length. Resistance potentiometer 1 k Ω . Enclosure rating IP 54.

Controller consisting of actuator with stroke positioning motor and in-built follower for stroke length adjustment via a standard signal. Standard signal current input 0/4-20 mA corresponds to stroke length 0 - 100%. Can be switched between manual and automatic operation, key switch for stroke adjustment for manual operation. Mechanical status display of actual stroke length value output 0/4-20 mA for remote display.

Variable speed motors with integrated frequency converter (identity code specification V)

Power supply 1ph 230 V, 50/60 Hz, 0.55 kW

Externally controllable with 0/4-20 mA (see Fig. pk_2_103).

On request externally controllable via PROFIBUS® DP

Speed controllers in metal housing (identity code characteristic Z)

The speed controller assembly consists of a speed controller and a 0.55 kW variable speed motor.

"Physiologically Safe (FDA) in Respect of Wetted Materials" Version

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

FDA guidelines:

■ Material PTFE: FDA No. 21 CFR § 177.1550 Material PVDF: FDA No. 21 CFR § 177.2510

Available for material design PVT and SST and DN 25 ball valve.

Identity code example: S3BaH120330PVTS00 F S000

Technical Data

Type S3Ba	With 1500 rpm motor at 50 Hz With 1800 rpm motor at 60		or at 60 Hz	Perm. pre-	Suction	Connection,					
		m	y rate at ax. back bressure	Max. stroke rate	De	livery rate at max. back pressure	Max. stroke rate	pressure suction side	lift	suction/ discharge side	weight
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h/gph (US)	Strokes/ min	bar	m WC	G-DN	kg
120145 PVT	10	146	33.7	72	145	174/45.9	86	2	5	1 1/2–25	22
120145 SST	12	146	33.7	72	174	174/45.9	86	2	5	1 1/2–25	26
120190 PVT	10	208	33.7	103	145	251/66.3	124	2	5	1 1/2–25	22
120190 SST	12	208	33.7	103	174	251/66.3	124	2	5	1 1/2–25	26
120270 PVT	10	292	33.8	144	145	351/92.7	173	2	5	1 1/2–25	22
120270 SST	12	292	33.8	144	174	351/92.7	173	2	5	1 1/2–25	26
120330 PVT*	10	365	33.8	180	-		_	2	5	1 1/2–25	22
120330 SST*	12	365	33.8	180	-		-	2	5	1 1/2–25	26
070410 PVT	7	410	95.1	72	102	492/129.9	86	1	4	2–32	24
070410 SST	7	410	95.1	72	102	492/129.9	86	1	4	2–32	29
070580 PVT	7	580	95.1	103	102	696/183.8	124	1	4	2–32	24
070580 SST	7	580	95.1	103	102	696/183.8	124	1	4	2–32	29
040830 PVT	4	830	95.1	144	58	1,000/264.1	173	1	3	2–32	24
040830 SST	4	830	95.1	144	58	1,000/264.1	173	1	3	2–32	29
041030 PVT*	4	1,030	95.1	180	_		_	1	3	2–32	24
041030 SST*	4	1,030	95.1	180	-		-	1	3	2–32	29

Performance data for TTT, see type PVT $\,\,^*$ Only available for 50 Hz.

Materials in Contact With the Medium

		DN 25 ball valves			DN 32 plate valves				
Material	Seals	Suction/pressure connector on dosing head	Valve balls	Valve seats	Suction/pressure connector on dosing head	Valve plates/valve springs	Valve seats	Integral relief valve	
PVT	PTFE	PVDF	Glass	PTFE**	PVDF	Ceramic/ Hast C. + CTFE*	PTFE	PVDF/FKM or EPDM	
SST	PTFE	Stainless steel 1.4581	Stainless steel 1.4404	PTFE**	Stainless steel 1.4581	Stainless steel 1.4404/ Hast. C	PTFE	Stainless steel/FKM or EPDM	
TTT***	PTFE	PTFE + 25% carbon	Ceramic	PTFE**	PVDF	Ceramic/ Hast C. + CTFE*	PTFE	-	

^{*} The valve spring is coated with CTFE (resistance similar to PTFE)

Motor Data

Identity code specification	Power supply	Δ/Υ			Remarks
S	3 ph, IP 55	220-240 V/380-420 V	50 Hz	0.37 kW	
		250-280 V/440-480 V	60 Hz	0.37 kW	
Т	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.37 kW	With PTC, speed control range 1:5
R	3 ph, IP 55	220-240 V/380-420 V	50 Hz	0.55 kW	With PTC, speed adjustment range 1:20 with separate fan 1ph 230 V; 50/60Hz
V0	1 ph, IP 55	230 V ±5%	50/60 Hz	0.55 kW	Variable speed motor with integrated frequency converter, control range 1:20 (1 ph, 230 V, 50/60 Hz)
М	1 ph AC, IP 55	230 V ±5%	50/60 Hz	0.55 kW	
N	1 ph AC, IP 55	115 V ±5%	60 Hz	0.55 kW	
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	0.37 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.37 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExellT3	250-280 V/440-480 V	60 Hz	0.37 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	0.37 kW	With PTC, speed control range 1:5
V2	3 ph, II2GEExdIICT4	400 V ±10%	50/60 Hz	0.55 kW	Ex-variable speed motor with integrated frequency converter. Mains feed: $3 \text{ ph} + \text{neutral} + \text{earth}$, control range 1:10

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IE3 standard in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

^{**} On design "F", the ball seat is made of PVDF, only for DN 25 ball valves

^{***} Specifically for areas at risk from explosion DN25: PTFE + 25% carbon; DN32 plate valves: PVDF

Sigma/ 3 Basic Type (S3Ba)

	Main dri	a dian	hroam									
Н	Main driv		ıııaym									
	r unip ty	bar	l/h			bar	I/h					
	120145		146		070410		410					
	120190	12	208		070580	7	580					
	120270	12	292		040830	4	830					
	120330	12	365		041030	4	1,030					
			end m									
		PV		(max. 10								
		SS		ss steel								
		TT			arbon (m	ax. 10 l	oar)					
				materia								
			Т	PTFE								
				Diaph S		or cafe	ty diaphi	aam wii	th ontice	al runtur	a indica	ator .
				A	_		ty diaphi	-	-			
				^	Liquid e			agiii wii	iiiiupiai	Colgila	iiiig (cc	maoti
					0		lve spring	ns				
					1			-	- lastellov	/ C 4: 0	1 bar (s	standard for DN 32)
					4							e springs, only with PV and SS
					5	With p	ressure	relief va	lve, FKI	√l seal v	ith valv	e springs (standard at DN 32), only with PV and SS
					6	With p	ressure	relief va	lve, EPI	DM sea	, withou	it valve spring, only with PV and SS
					7	With p	ressure	relief va	ılve, EPI	DM sea	, with va	alve springs (standard at DN 32), only with PV and SS
						Hydra	ulic cor					
						0					(as tecl	nnical data)
						1			PVC ins			
						2			PP inse PVDF ir			
						4			SS** ins			
						7			PVDF h		יזופ	
						8			SS hose			
						9			stainles			zzle
							Versio	n				
							0	With P	roMinen	t® logo		
							1	Withou	ıt ProMiı	nent® lo	go	
							M	Modifie				
							F				• •	A) in respect of wetted materials (only for 12 bar version
									ical pov			
								S		30 V/40		L DTO
								T R		30 V/40		
								n	50/60 H		ı motor	3 ph, 230/400 V, with PTC, with external fan 1 ph 230 \
								V (0)			motor	with integrated frequency converter 1 ph, 230 V, 50/60 H.
								z`´				1 ph 230 V//400 V (variable speed motor + FC)
								M	1 ph, 2	30 V	•	
								N	1 ph, 1	15 V		
								L	3 ph, 2	30 V/40	0 V, 0.3	37 kW, 50 Hz, (Exe, Exd)
								Р			,	37 kW, 60 Hz, (Exe, Exd)
								V (2)				with integr. FC Exd (delivery with frame)
								1		,		ige, size 80 (DIN)
								2		,		EMA flange
								3				ge, size 71 (DIN)
										sure rat	ing	
									0	IP 55	otor ver	sion ATEX-T3
									2	_		sion ATEX-13
									_	_	senso	
										0		oke sensor (standard)
										2		g relay (read relay)
										3	,	sensor (Namur) for explosion-proof application
												e length adjustment
											0	Manual (standard)
											1	With stroke positioning motor, 230 V/50/60 Hz
											2	With stroke positioning motor, 115 V/50/60 Hz
											3	With stroke control motor 020 mA 230 V/50/60 Hz
											4	With stroke control motor 420 mA 230 V/50/60 Hz
											5	With stroke control motor 020 mA 115 V/50/60 Hz
		ì	1	1	1	1	1		1	I	6	With stroke control motor 420 mA 115 V/50/60 Hz

^{* 10} bar for the PVDF and TTT version

EHEDG-certified (European Hygienic Eng. Design Group) electropolished stainless steel dosing heads (< Ra 0.8) type EL class I are available on request

We are happy to supply alternative material versions to comply with export conditions for pump capacities > 600 l/h and PVDF.

 $^{^{\}star\star}$ Internal thread of the insert SS DN25-Rp 1, DN32-Rp 1 1/4

1.6.2 Spare Parts

The replacement part kit in general includes wear parts for the liquid ends.

Scope of delivery for material PVT

- 1 x metering diaphragm, 1 x suction valve compl., 1 x pressure valve compl., 2 x valve balls or valve plate with spring for DN 32, 1 x elastomer seal set (EPDM, FKM-B),
- 2 x ball seat bushings, 2 x ball seat washers
- 4 x formed composite seals

Scope of delivery for material SST

- 1 x metering diaphragm, 2 x valve balls or valve plate with spring for DN 32,
- 2 x ball seat washers,
- 4 x formed composite seals

Spare Parts Kits Sigma/ 3 for Design With Multi-layer Safety Diaphragm

(For Identity code: type 120145, 120190, 120270, 120330)

Liquid end	Materials in contact with the medium		Order no.
FM 330 - DN 25	PVT	-	1034678
FM 330 - DN 25	TTT	with 2 valves cpl.	1077575
FM 330 - DN 25	SST	-	1034679
FM 330 - DN 25	SST	with 2 valves cpl.	1034680

(For Identity code: type 070410, 070580, 040830, 041030)

Liquid end	Materials in contact with the medium		Order no.
FM 1000 - DN 32	PVT/PPT/PCT	-	1034681
FM 1000 - DN 32	SST	-	1034682
FM 1000 - DN 32	SST	with 2 valves cpl.	1034683

Spare Parts Kits for Sigma/ 3 for Design With Old Diaphragm

(Applies to identity code: Type 120145, 120190, 120270, 120330)

Liquid end	Materials in contact with the medium		Order no.
FM 330 - DN 25	PVT	-	1005308
FM 330 - DN 25	SST	-	1005310
FM 330 - DN 25	SST	with 2 valves cpl.	1005312

(Applies to identity code: Type 070410, 070580, 040830, 041030)

Liquid end	Materials in contact with the medium		Order no.
FM 1000 - DN 32	PVT/PPT/PCT	-	1020032
FM 1000 - DN 32	SST	-	1005311
FM 1000 - DN 32	SST	with 2 valves cpl.	1005313

Spare Parts Kit for Sigma/ 3 With FDA Design (Physiologically Safe)

(For Identity code: type 120145, 120190, 120270, 120330)

Liquid end	Materials in contact with the medium		Order no.
FM 330 - DN 25	PVT	-	1046478
FM 330 - DN 25	SST	without valve	1046479
FM 330 - DN 25	SST	with valve	1046480

Multi-layer Safety Diaphragm (Standard)

	Order no.
FM 330 identity code: type 120145, 120190, 120270, 120330	1029604
FM 1000 identity code: type 070410, 070580, 040830, 041030	1029603

Metering Diaphragm (Old Version)

	Order no.	
FM 330 Identity code: Type 120145, 120190, 120270, 120330	1004604	
FM 1000 Identity code: Type 070410, 070580, 040830, 041030	1002835	

Spare Parts Kits for Integrated Relief Valve

Consisting of two compression springs made from Hastelloy C and four FKM-A O-rings each

	For material	Seals	Order no.	
ETS overflow valve 4 bar	PVT/SST	FKM-A/EPDM	1031204	
ETS overflow valve 7 bar	PVT/SST	FKM-A/EPDM	1031205	
ETS overflow valve 10 bar	PVT	FKM-A/EPDM	1031201	
ETS overflow valve 12 bar	SST	FKM-A/EPDM	1031202	

Gear Oil

	Volume	Order no.
	I	
Mobilgear 634 VG 460 gear oil	1	1004542

Accessories

- \blacksquare Foot Valves for Motor Driven Metering Pumps see page \rightarrow 1-46
- Injection Valves for Motor Driven Metering Pumps see page \rightarrow 1-49
- \blacksquare Connectors and Seals for Motor Driven Metering Pumps see page \rightarrow 1-75
- Suction Lances, Suction Assemblies and Level Switches for Motor Driven Metering Pumps see page → 1-64
- Speed Controllers see page \rightarrow 1-82
- Thermal metering monitor see page → 1-92

Spare Parts

■ Custom Accessories See page → 1-89

171

P SI 0101 SW

Motor Driven Metering Pump Sigma/ 3 (Control Type)

The intelligent pump for safe and reliable use in many applications

Capacity range 182 - 1,040 l/h, 12 - 4 bar

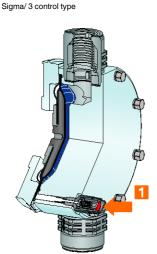
The motor-driven diaphragm metering pump Sigma/ 3 Control guarantees excellent process reliability, thanks to its patented multi-layer safety diaphragm. Intelligent features, such as removable operating unit and adjustable metering profiles, as well as a variety of power end and control configurations, enable the versatile use of this pump.

The Sigma/ 3 Control diaphragm metering pump together with pumps of type Sigma/ 1 Control and Sigma/ 2 Control represent an integrated product range. They cover the capacity range from 17 to 1,040 l/h. The entire Sigma Control product range is equipped with intelligent features to provide a high level of operating convenience, safety and efficiency. The pump product range has a removable operating unit and adjustable metering profiles to ensure optimum metering results.

Your benefits

Excellent process safety and reliability:

- In the event of an accident, the feed chemical does not escape to the outside nor into the pump's power end, thanks to the patented multi-layer safety diaphragm with optical (optionally electric) signalling
- Integrated overload shut-down in the pump control to protect the pump from overloading and thus significantly reduced pressure surges caused by blockages.
- Integrated relief valve protects the pump against overloading and bleed option during the metering process ensures reliable operation


- Detachable operating unit with large illuminated LC display for outstanding user convenience
- Metering profiles for optimum metering results
- The entire Sigma product range is available as standard in a "Physiologically safe in respect of wetted materials" design and with electro-polished stainless steel dosing head and EHEDG certification for applications with strict hygiene requirements
- Different control options are available, as well as easy connection to bus-networked systems by PROFIBUS®
- Customised designs are available on request

Technical Details

- Stroke length: 6 mm
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 1% increments (optionally with actuator or control drive)
- Metering reproducibility is better than ± 2% in the 30 100% stroke length adjustment range under defined conditions and with correct installation
- Wetted materials: PVDF, stainless steel 1.4571/1.4404, special materials on request
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with diaphragm rupture warning system via a contact)
- Integrated hydraulic relief and bleed valve
- Removable operating unit with large illuminated LC display
- Metering profiles for optimum metering results
- Degree of protection IP 65
- Highly rigid fibreglass-reinforced plastic housing with excellent chemical resistance
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps.

Field of application

- Volume-proportional addition of chemicals in water treatment, e.g. sodium-calcium hypochlorite for the disinfection of potable water
- Neutralisation in waste water treatment
- Time-controlled addition of chemicals in the cooling water circuit
- Pulse-controlled metering in the bottling of different volumes e.g. glycerin filling of manometers

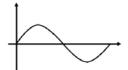
P_SI_0065_C1
1: Diaphragm rupture sensor

P_SI_0099_SW3

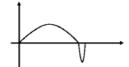
Detachable Operating Unit (HMI)

The operating unit (HMI) can be attached directly to the metering pump or mounted on the wall alongside the pump. This provides the operator with a range of options for the integration of a metering system in the overall system that it is readily accessible and easy to use. Moreover the removable operating unit offers additional protection against unauthorised operation of the metering pump or against modification of the pump settings. The operating unit can, for example, be completely removed for project applications.

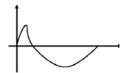
Individual functions of the metering pump can be easily selected and adjusted with five program keys. An illuminated LCD display provides information about the relevant operating status. LEDs on the operating unit and the control unit indicate the active pump functions or the pump status.


Metering Profiles

Metering profiles guarantee optimum metering results by adapting the metering behaviour of the metering pump to the application or chemical used.


The stroke motion of the displacement body is continually recorded and regulated so that the stroke is made in line with the desired metering profile. The pump can be operated in normal mode (Diagram 1), with optimised discharge stroke (Diagram 2) or with optimised suction stroke (Diagram 3). Three typical metering profiles are shown schematically with the behaviour over time.

In normal operating mode, the time behaviour for the suction stroke and the discharge stroke is similar (Diagram 1). In the mode with optimised discharge stroke (Diagram 2), the discharge stroke is lengthened while the suction stroke is made as quickly as possible. This set-up is suited to applications which require optimum mixing and as continuous a mixing of chemicals as possible, for example.


In the mode with the optimised suction stroke (diagram 3), the suction stroke is carried out as slowly as possible, permitting precise and trouble-free metering of viscous and gaseous media. Select this setting to minimise the NPSH value as well.

P_SI_0102_SW
Diagram 1: Discharge stroke, suction stroke equal

P_SI_0103_SW
Diagram 2: Long discharge stroke, short suction stroke

P_SI_0104_SW
Diagram 3: Short discharge stroke, long suction stroke

"Physiologically Safe (FDA) in Respect of Wetted Materials" Version

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

FDA guidelines:

- Material PTFE: FDA No. 21 CFR § 177.1550
- Material PVDF: FDA No. 21 CFR § 177.2510

Available for material version PVT and SST.

Identity code example: S1CbH07042PVTS01 F UA10S0DE

Technical Data

Type S3Cb	Delivery rate at max. back pressure						Suction lift	Perm. pre- pressure suction side	Connection, suction/ discharge side	Shipping weight
	bar	l/h	ml/stroke	Strokes/min	psi	gph (US)	m WC	bar	G-DN	kg
120145 PVT	10	182	33.7	90	145	48.0	5	2	1 1/2–25	22
120145 SST	12	182	33.7	90	174	48.0	5	2	1 1/2–25	26
120190 PVT	10	243	33.7	120	145	64.1	5	2	1 1/2–25	22
120190 SST	12	243	33.7	120	174	64.1	5	2	1 1/2–25	26
120270 PVT	10	365	33.8	180	145	96.4	5	2	1 1/2–25	22
120270 SST	12	365	33.8	180	174	96.4	5	2	1 1/2–25	26
070410 PVT	7	500	95.1	90	102	132.0	4	1	2–32	24
070410 SST	7	500	95.1	90	102	132.0	4	1	2–32	29
070580 PVT	7	670	95.1	120	102	176.9	4	1	2–32	24
070580 SST	7	670	95.1	120	102	176.9	4	1	2–32	29
040830 PVT	4	1,040	95.1	180	58	274.7	3	1	2–32	24
040830 SST	4	1,040	95.1	180	58	274.7	3	1	2–32	29

Materials in Contact With the Medium

		DN 25 b	all valves		DN 32 plate valves					
Material	Suction/pressure connector on dosing head	Seals	Valve balls	Valve seats	Seals	Valve plates/ valve springs	Valve seats	Integral relief valve		
PVT	PVDF	PTFE	Glass	PTFE**	PTFE	Ceramic/ Hast C. + CTFE*	PTFE	PVDF/FKM or EPDM		
SST	Stainless steel 1.4581	PTFE	Stainless steel 1.4404	PTFE**	PTFE	Stainless steel 1.4404/ Hast. C	PTFE	Stainless steel/FKM or EPDM		

^{*} The valve spring is coated with CTFE (resistance similar to PTFE)

Motor Data

Identity code specification		Power supply			Remarks
U	1-phase, IP 65	100 - 230 V ±10 % / 240 V ±6 %	50/60 Hz	420 W	

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IE3 standard in compliance with the Ecodesign Directive 2009/125/EC.

^{**} The ball seat is made of PVDF with design "F"

Sigma/ 3 Control type (S3Cb)

Figure F	S3Ch	Drive t	vne														
Pump type	3300			wer end	d, diaphr	agm											
120145 12 12 243 070580 7 670			-		,												
120145 12 182 070540 7 500			. up :,		I/h			bar	I/h								
Position			120145		-		070410		-								
Dosing head material PV PVD (max. 10 bar) SS Stainless steel Semanterial T PTFE seal Displacement body S Multi-layer safety disphragm with optical rupture indicator A Multi-layer safety disphragm with optical signal Dosing head version O I on valve spring (standard) O I on valve spring ST			120190	12	243		070580	7	670								
PV PVDF (max. 10 bar) SS Stainless steel Seal material T PTFE seal Displacement body SS Stainless steel Displacement body SM Multi-layer safety disphragm with optical rupture indicator A Multi-layer safety disphragm with electrical signal Docing head version O Ino valve spring (standard) O Ino valve spring (standard) Ino valve spring spring, Hastelloy C; 0.1 bar (standard for DN 32) With Deled valve, PKM Seal, with valve spring With Deled valve, PKM Seal, with valve spring With Telef valve, PFM Seal, no valve spring With Telef valve, PFM Seal, with valve spring With Telef valve, PFM Seal, with valve spring With Telef valve, PFM Seal, with valve spring With Delevation With Seal valve spring			120270	12	365		040830	4	1,040								
SS Stainless steel T					J												
Seal material T						•											
T PTTE seal Displacement body S Multi-layer safety diaphragm with optical rupture indicator A Multi-layer safety diaphragm with electrical signal Dosing bead version O no valve spring (standard) 1 with 2 valve springs (standard) 1 with 2 valve springs (standard) 2 with bleed valve, FKM seal, no valve springs 4** with relief valve, FPM seal, over valve springs 4** with relief valve, EPM seal, vith valve springs 4** with relief valve, EPM seal, vith valve springs 4** with relief valve, EPM seal, with valve 4** Union nut and PVDF tube nozzie 4** Union nut and PVDF tube nozzie 5** With relief valve, EPM seal, with valve springs 4** With relief valve, EPM seal, with valve springs 5** With relief valve, EPM seal, with valve springs 4** With relief valve, EPM seal, with valve springs 5** With relief valve, EPM seal, with valve springs 5** With relief valve, EPM seal, with valve springs 5** With relief valve, EPM seal, with valve springs 5** With relief valve, EPM seal, with valve springs 6** With				SS													
Displacement body S Multi-layer safety diaphragm with optical rupture indicator Multi-layer safety diaphragm with electrical signal Dosing bead version O																	
S Multi-layer safety diaphragm with optical rupture indicator A Multi-layer safety diaphragm with optical rupture indicator Dosing head version O no valve spring (standard) 1 with 2 valve spring (standard) 1 with 2 valve springs 3 with bibled valve, FKM seal, volve valve springs 3 with bibled valve, FKM seal, volve valve springs 4** with relief valve, FFM seal, volve valve springs 5** with relief valve, FFM seal, vith valve springs 4** with relief valve, FFM seal, volve valve springs 5** with relief valve, FFM seal, vith valve springs 4** with relief valve, FFM seal, vith valve springs 4** with relief valve, FFM seal, vith valve spring 4** with relief valve, FFM seal,																	
Multi-layer safety disphragm with electrical signal Dosing head version 0									tu dianh	roam	ith onti-	al runt	ıro indi-	ator			
Dosing head version 0 0 no valve spring (standard) 1 with 2 valve springs, Hastelloy C; 0.1 bar (standard for DN 32) with 2 valve springs vith 2 valve springs vith 2 valve spring vith 2 valve spring vith 2 valve spring vith 2 valve spring vith 2 valve SPM seal, with valve springs vith relief valve, EPDM seal, with valve spring vith bleed valve, EPDM seal, with valve spring vith bleed valve, EPDM seal, with valve spring vith relief valve, EPDM seal, with valve spring vith bleed valve, EPDM seal, vith valve spring vith relief valve, EPDM seal, vith valve spring vith valve spring vith relief valve, EPDM seal, vith valve spring vith relief val							1			•				αιυι			
No valve spring (standard)						, ,	_			agiii W	0100	inoul olg	ji iui				
1										g (stand	dard)						
with bleed valve, FKM seal, no valve spring with relief valve, FPM seal, no valve springs with relief valve, FPM seal, with valve springs with relief valve, FPM seal, with valve springs with bleed valve, EPDM seal, no valve spring with profit valve, EPDM seal, no valve spring with relief valve, EPDM							1		-			y C; 0.1	bar (sta	andard f	or DN 3	2)	
with relief valve, FPM seal, no valve springs with relief valve, EPDM seal, with valve springs with relief valve, EPDM seal, with valve springs with relief valve, EPDM seal, volvative springs with relief valve, EPDM seal, volvative springs with relief valve, EPDM seal, volvative springs with relief valve, EPDM seal, with valve spring with bleed valve, EPDM seal, volvative valve spring with bleed valve, EPDM seal, v							2		-	_		-					
## with relief valve. FPM seal, with valve springs with relief valve. EPDM seal, no valve springs with relief valve. EPDM seal, with valve springs with relief valve. EPDM seal, with valve springs with relief valve. EPDM seal, with valve spring ## with relief valve. EPDM seal, with valve spring ## with relief valve. EPDM seal, with valve spring ## with relief valve. EPDM seal, with valve spring ## with relief valve. EPDM seal, with valve spring ## with relief valve. EPDM seal, with valve spring ## with relief valve. EPDM seal, an ovalve spring ## with relief valve. EPDM seal, an ovalve spring ## with relief valve. EPDM seal, an ovalve spring ## with relief valve. EPDM seal, an ovalve spring ## with relief valve. EPDM seal, an ovalve spring ## with relief valve. EPDM seal, an ovalve spring ## with relief valve. EPDM seal, an ovalve spring ## with relief valve. EPDM seal, an ovalve spring ## with relief valve. EPDM seal, an ovalve spring ## with relief valve. EPDM seal, an ovalve spring ## with relief valve. EPDM seal, an ovalve spring ## with relief valve. EPDM seal, an ovalve spring ## with relief valve. EPDM seal, an ovalve spring ## with relief valve. EPDM seal, an ovalve spring ## with relief valve. EPDM seal, an ovalve spring ## with relief valve. EPDM seal, an ovalve spring ## Union nut and valve spring ## Union nut and valve spring ## Union nut and PVDF insert ## Union nut and valve insert ## Un							-							J			
6*** with relief valve, EPDM seal, no valve springs with bleed valve, EPDM seal, with valve spring Hydraulic connector 1 Union nut and PVC insert 7 Union nut and Stainless steel** insert 1 Union nut and PVDF tube nozzle 1 Union nut and PVDF insert 8 Union nut and stainless steel tube nozzle 1 Union nut and PVDF insert 9 Union nut and stainless steel welding sleeve Version 0 With proximent* Logo F Without Proximent* Logo I proximate Power supply 1 proximate Power supply 1 proximate Power supply 1 proximate Power supply 2 proximate Power supply 2 proximate Power supply 2 proximate Power supply 3 proximate Power supply 2 proximate Power supply 3 proximate Power supply 2 proximate Power supply 3 proximate Power supply 4 proximate Power supply 2 proximate Power supply 2 proximate Power supply 3 proximate Power supply 2 proximate Power supply 3 proximate Power supply 4 proxim																	
with relief valve, EPDM seal, with valve springs with bleed valve, EPDM seal, with valve spring with bleed valve, EPDM seal, with valve spring Hydraulic connector Hydraulic connector Standard connection Union nut and PVD Finsert Union nut and PVD Finsert Union nut and PVD Finsert Union nut and PPF insert Union nut and PVD Finsert Union nut and Stainless steel twe nozzle With up ProMinent® Logo With ProMinent® Logo With ProMinent® Logo Without ProMinent® Logo With up ProMinent® Logo No relay In Fault indicating relay (24 V, 100 mA) + pacing relay (24 V, 100 mA) + pacin																	
with bleed valve, EPDM seal, no valve spring with bleed valve, EPDM seal, with valve spring Hydraulic connector 0 Standard connection 4 Union nut and stainless steel** insert 1 Union nut and PVC insert 7 Union nut and PVDF tube nozzle 2 Union nut and PVC insert 9 Union nut and stainless steel tube nozzle 3 Union nut and PVDF insert 9 Union nut and stainless steel tube nozzle 4 Version 0 With ProMinent® Logo 1 Without ProMinent® Logo 2 With physiological safety (PDA) in respect of wetted materials (only for 12 bar version) Electric power supply 1 1 ph, 100 – 230 ½ ±10%, 240 ½ ±6%, 50/60 Hz, 420 W Cable and plug A 2 m Europe B 2 m Swiss C 2 m Australia D 2 m USA Relay Relay Relay Relay Fault indicating relay (230 V, 8 A) Fault indicating relay (24 V, 100 mA) + pacing relay (24 V, 100 mA) ON Manual + external contact with pulse control 1 As 0 + analogue output + fault indicating / pacing relay (24 V + 100 mA) Control versions 0 Manual + external contact with pulse control 1 As 0 + analogue - metering profiles 6 As 1 + PROFIBUS® Dinterface, M 12 7 as 1 + CANopen (CiA 402, M12 plug), pump without operating unit (HMI) Correctoral switch-off 0 without overload switch-off 0 without overload switch-off 0 without overload switch-off 1 HMI + 2 m cable 2 HMI + 5 m cable 3 HMI + 10 m cable 4 HMI + 5 m cable 1 HMI + 5 m cable 2 HMI + 5 m cable 3 HMI + 10 m cable 4 HMI + 5 m cable 4 HMI + 5 m cable 5 Spanish 5 F F French 1 Italian NL Dutch Polish																	
# with bleed valve, EPDM seal, with valve spring # Hydraulic connector 0 Standard connection 4 Union nut and stainless steel** insert 1 Union nut and PVD insert 7 Union nut and Stainless steel tube nozzle 2 Union nut and PVD insert 8 Union nut and stainless steel tube nozzle 2 Union nut and PVD insert 9 Union nut and stainless steel tube nozzle 4 Union nut and PVD insert 9 Union nut and stainless steel welding sleeve Wersion 0 Without ProMinent** Logo Without ProMinent** Logo Without ProMinent** Logo Union nut and stainless steel welding sleeve Wersion 1 p.m. and pvb prominent** Logo Without ProMinent** Logo Without ProMinent** Logo Union nut and stainless steel welding sleeve Wersion 1 p.m. and pvb prominent** Logo Without prominent**														-			
Hydraulic connection Standard connection Standard connection Union nut and PVC insert Union nut and PVDF tube nozzle Union nut and PVDF insert Union nut and PVDF insert Union nut and PVDF insert Union nut and Stainless steel tube nozzle Union nut and PVDF insert Union nut and Stainless steel tube nozzle Union nut and PVDF insert Union nut and Stainless steel welding sleeve Version With ProMinent® Logo With physiological safety (FDA) in respect of wetted materials (only for 12 bar version) Electric power supply Union nut and Stainless steel welding sleeve Version With physiological safety (FDA) in respect of wetted materials (only for 12 bar version) Electric power supply Union nut and PVDF insert Union nut and stainless steel tube events Union nut and stainless steel tube in color in the with pusion of the serion Union nut and stainless steel union in the serion Union nut an							_							•			
Standard connection 4 Union nut and stainless steel***insert 1 Union nut and PVD insert 7 Union nut and PVDF tube nozzle 2 Union nut and PVDF insert 8 Union nut and stainless steel tube nozzle 2 Union nut and PVDF insert 9 Union nut and stainless steel tube nozzle 2 Union nut and PVDF insert 9 Union nut and stainless steel welding sleeve ### Version 0 With ProMinent® Logo With proMinent® Logo With proMinent® Logo Without ProMinent® Logo							ľ					۷۵	o opin	.9			
Union nut and PP insert														4	Union	nut and	stainless steel*** insert
Union nut and PVDF insert								1	Union	nut and	PVC in	sert		7	Union	nut and	PVDF tube nozzle
Version								2	Union	nut and	PP inse	ert		8	Union	nut and	stainless steel tube nozzle
								3	Union	nut and	PVDF	insert		9	Union	nut and	stainless steel welding sleeve
Note Provided the provided that the provided																	
F with physiological safety (FDA) in respect of wetted materials (only for 12 bar version) Felectric power supply												_					
Canguage DE German De German De Canguage DE German De Canguage DE Ca													•	۸ \ نم	noot of	wotted :-	potoriolo (only for 10 hor yearsia-a)
U									[• •	~) III 165	phecrot.	welled n	ialeriais (Orily IOI 12 Dar Version)
Cable and plug														%. 240	V ±6%	50/60 H	z. 420 W
A 2 m Europe B 2 m Swiss 2 m Australia D 2 m USA Relay 0 No relay 1 Fault indicating relay (230 V, 8 A) 3 Fault indicating relay (24 V, 100 mA) + pacing relay (24 V, 100 mA) analogue output + fault indicating / pacing relay (24 V - 100 mA) Control versions 0 Manual + external contact with pulse control 1 As 0 + analogue + metering profiles 6 As 1 + PROFIBUS® DP interface, M 12 as 1 + CANopen (CiA 402, M12 plug), pump without operating unit (HMI) *** Overload switch-off 0 without overload switch-off Overload switch-off 0 Without overload switch-off 0 0 Without overload switch-off 0 0 Without overload switch-off 0 0 0 0 0 0 0 0 0															0 /0,	30,0011	
B 2 m Swiss C 2 m Australia D 2 m USA Relay																	
D 2 m USA Relay 0 No relay 1 Fault indicating relay (230 V, 8 A) 3 Fault indicating relay (24 V, 100 mA) + pacing relay (24 V, 100 mA) 8 0/4-20 mA analogue output + fault indicating / pacing relay (24 V - 100 mA) Control versions 0 Manual + external contact with pulse control 1 As 0 + analogue + metering profiles 6 As 1 + PROFIBUS® DP interface, M 12 7 as 1 + CANopen (CiA 402, M12 plug), pump without operating unit (HMI) Overload switch-off Operating unit (HMI) S HMI (0.5 m cable) 1 HMI + 2 m cable 2 HMI + 5 m cable 3 HMI + 10 m cable 1 HMI + 5 m cable 3 HMI + 10 m cable 1 Italian NL Dutch PL Polish D without access control											В	2 m Sv	viss				
Relay No relay No relay Relay No relay Relay No relay Fault indicating relay (230 V, 8 A) Fault indicating relay (24 V, 100 mA) + pacing relay (24 V, 100 mA) Note an analogue output + fault indicating / pacing relay (24 V - 100 mA) Control versions Note an analogue + metering profiles As 0 + analogue + metering profiles As 1 + PROFIBUS® DP interface, M 12 The as 1 + CANopen (CiA 402, M12 plug), pump without operating unit (HMI) Sufficiently in the association of the part of the												2 m Au	ustralia				
Control versions											D	2 m U	SA				
Tault indicating relay (230 V, 8 A)																	
Fault indicating relay (24 V, 100 mA) + pacing relay (24 V, 100 mA) 8														•	, .		•
B O/4-20 mA analogue output + fault indicating / pacing relay (24 V - 100 mA) Control versions O Manual + external contact with pulse control 1 As 0 + analogue + metering profiles 6 As 1 + PROFIBUS® DP interface, M 12 7 as 1 + CANopen (CiA 402, M12 plug), pump without operating unit (HMI) ****** Overload switch-off O without overload switch-off O without overload switch-off O Parating unit (HMI) S HMI (0.5 m cable) HMI + 2 m cable HMI + 2 m cable ES Spanish ES Spanish ES Spanish French T Italian T Italian T T T T T T T T T							1										
Control versions Description Descripti												-					
Control versions 0							1					٥				աւբաւ + T	aut mulcating / pacing relay
Comparison of the control of the c													1		,		
Canguage														Manua	al + exte		
Tanguage DE German EN English ES Spanish FR French IT Italian NL Dutch PL Polish 7 as 1 + CANopen (CiA 402, M12 plug), pump without operating unit (HMI) 7 overload switch-off 0 without overload switch-off 0 without overload switch-off 0 HMI (0.5 m cable) S HMI (0.5 m cable) 1 HMI + 2 m cable 2 HMI + 5 m cable 3 HMI + 10 m cable X without operating unit (HMI) Access code 0 without access control							1										
DE German Est Spanish French Italian NL Dutch PL Polish																	The state of the s
Coverload switch-off Owithout overload switch-off Owitho													7				
Canguage																. ,	
Language DE German EN English ES Spanish FR French IT Italian NL Dutch PL Polish Operating unit (HMI) S HMI (0.5 m cable) 1 HMI + 2 m cable 2 HMI + 5 m cable 3 HMI + 10 m cable X without operating unit (HMI) Access code 0 without access control																	ad switch-off
DE German EN English ES Spanish FR French IT Italian NL Dutch PL Polish S HMI (0.5 m cable) 1 HMI + 2 m cable 2 HMI + 10 m cable X without operating unit (HMI) Access code 0 0 without access control	Langu	age	1		l									1			
EN English ES Spanish FR French IT Italian NL Dutch PL Polish I HMI + 2 m cable 2 HMI + 5 m cable 3 HMI + 10 m cable X without operating unit (HMI) Access code 0 without access control			n														
FR French IT Italian NL Dutch PL Polish French 3 HMI + 10 m cable without operating unit (HMI) Access code 0 without access control															1		
IT Italian NL Dutch PL Polish X without operating unit (HMI) Access code 0 without access control		Spanis	h													HMI +	5 m cable
NL Dutch PL Polish Access code 0 without access control			I														
PL Polish 0 without access control															Χ		,
PT Portuguese 1 1 with access control							1									-	
	PT	Portugi	uese													1	with access control

^{* 10} bar with PVDF version.

We are happy to supply alternative material versions to comply with export conditions for pump capacities > 600 l/h and PVDF.

 $^{^{\}star\star}$ Standard with tube nozzle in the bypass. Threaded connection on request.

^{***} Internal thread of the insert SS DN25-Rp 1, DN32-Rp 1 1/4

^{****} An HMI order no. 1042549 is required for manual operation, e.g. with the failure of the CAN bus EHEDG-certified (European Hygienic Eng. Design Group) electropolished stainless steel dosing heads (< Ra 0.8) type EL class I are available on request.

1.7.2 Spare Parts

The replacement part kit in general includes wear parts for the liquid ends.

Scope of delivery for material PVT

- 1 x metering diaphragm, 1 x suction valve compl., 1 x pressure valve compl., 2 x valve balls or valve plate with spring for DN 32, 1 x elastomer seal set (EPDM, FKM-B),
- 2 x ball seat bushings, 2 x ball seat washers
- 4 x formed composite seals

Scope of delivery for material SST

- 1 x metering diaphragm, 2 x valve balls or valve plate with spring for DN 32,
- 2 x ball seat washers,
- 4 x formed composite seals

Spare Parts Kits Sigma/ 3 for Design With Multi-layer Safety Diaphragm

(For Identity code: type 120145, 120190, 120270, 120330)

Liquid end	Materials in contact with the medium		Order no.
FM 330 - DN 25	PVT	_	1034678
FM 330 - DN 25	TTT	-	1077575
FM 330 - DN 25	SST	_	1034679
FM 330 - DN 25	SST	with 2 valves cpl.	1034680

(For Identity code: type 070410, 070580, 040830, 041030)

Liquid end	Materials in contact with the medium		Order no.
FM 1000 - DN 32	PVT/PPT/PCT/TTT	-	1034681
FM 1000 - DN 32	SST	-	1034682
FM 1000 - DN 32	SST	with 2 valves cpl.	1034683

Spare Parts Kits for Sigma/ 3 for Design With Old Diaphragm

(Applies to identity code: Type 120145, 120190, 120270, 120330)

Liquid end	Materials in contact with the medium		Order no.
FM 330 - DN 25	PVT	-	1005308
FM 330 - DN 25	SST	-	1005310
FM 330 - DN 25	SST	with 2 valves cpl.	1005312

(Applies to identity code: Type 070410, 070580, 040830, 041030)

Liquid end	Materials in contact with the medium		Order no.
FM 1000 - DN 32	PVT/PPT/PCT	-	1020032
FM 1000 - DN 32	SST	-	1005311
FM 1000 - DN 32	SST	with 2 valves cpl.	1005313

Spare Parts Kit for Sigma/ 3 With FDA Design (Physiologically Safe)

(For Identity code: type 120145, 120190, 120270, 120330)

Liquid end	Materials in contact with the medium		Order no.
FM 330 - DN 25	PVT	-	1046478
FM 330 - DN 25	SST	without valve	1046479
FM 330 - DN 25	SST	with valve	1046480

Multi-layer Safety Diaphragm (Standard)

	Order no.
FM 330 identity code: type 120145, 120190, 120270, 120330	1029604
FM 1000 identity code: type 070410, 070580, 040830, 041030	1029603

Metering Diaphragm (Old Version)

	Order no.
FM 330 Identity code: Type 120145, 1201	90, 120270, 120330 1004604
FM 1000 Identity code: Type 070410, 070	580, 040830, 041030 1002835

Spare Parts Kit for Integrated Relief Valve (S3Ca, S3Cb)

Consisting of two compression springs made from Hastelloy C and four FKM-A O-rings each

	For material	Seals	Order no.
ETS overflow valve 4 bar	PVT/SST	FKM-A/EPDM	1031204
ETS overflow valve 7 bar	PVT/SST	FKM-A/EPDM	1031205
ETS overflow valve 10 bar	PVT	FKM-A/EPDM	1031201
ETS overflow valve 12 bar	SST	FKM-A/EPDM	1031202

Gear Oil

	Volume	Order no.
	I	
Mobilgear 634 VG 460 gear oil	1	1004542

Spare Parts Kits for Integrated Bleed Valve (S3Cb)

Consisting of a compression spring made from Hastelloy C and four FKM-A and EPDM O-rings each For identity code specification "Dosing head version" with characteristic "2", "3", "8", "9"

	Pump type	For material	Seals	Order no.
ETS	120145, 120190, 120270	PVT/SST	FKM-A/EPDM	1043785
ETS	070410, 070580, 040830	PVT/SST	FKM-A/EPDM	1043786

Protective Cowling for Operating Unit (HMI)

Protection of the operating unit (HMI) of Sigma metering pumps against contamination; made from transparent silicone plastic. For Sigma control types S1Cb / S2Cb / S3Cb.

	Order no.
Protective cowling for operating unit (S1Cb, S2Cb, S3Cb)	1036724

Wall Bracket for Operating Unit (HMI)

Wall bracket with operating lever for wall mounting of the operating unit (HMI) without any fittings. For Sigma control types S1Cb / S2Cb / S3Cb.

	Order no.
Wall bracket for operating unit (S1Cb, S2Cb, S3Cb)	1036683

Extension cable for operating unit (HMI)

	Order no.
Connecting cable - CAN M12 5-pole 1 m	1022139
Connecting cable - CAN M12 5-pole 2 m	1022140
Connecting cable - CAN M12 5-pole 5 m	1022141
Connecting cable - CAN M12 5-pin. 10 m*	1046383

Accessories of CANopen operation

An operating unit is needed for the manual operation of a CANopen pump.

	Order no.
Operating unit (HMI)	1042549

Accessories

- Foot Valves See page → 1-46
- Injection Valves See page → 1-49
- Connector Parts, Seals, Hoses See page → 1-75
- Suction Lances/Suction Assemblies See page → 1-64

Spare Parts

■ Custom Accessories See page → 1-89

1.8.1

Foot Valves for Motor Driven Metering Pumps

For connection to the end of the suction line, used as a vacuum breaker and for protection of the pump against contamination. With filter meshes and ball check. Materials used as in the pump liquid ends. Union nuts and inserts/tube nozzles are included in the scope of supply with DN 10 and DN 15 foot valve sizes.

Important: Foot valves are not suitable as absolutely leak-tight shut-off devices.

Ø D2 Ø D1

P_AC_0206_SW

PPE Foot Valve

Housing made of PP, seals made of EPDM, with filter meshes and ball check (glass).

DN 10, DN 15 with union nut and PP tube nozzle

DN 20 to DN 40 no connection parts

	G	В	Ø D2	Α	Ø D1	Order no.	
		mm	mm	mm	mm		
DN 10	3/4	59	40	101	16	809465	
DN 15	1	66	47	142	20	924516	
DN 20	1 1/4	77	55	_	_	803721	
DN 25	1 1/2	84	60	-	-	803722	
DN 32*	2	98	74	-	-	1006434	
DN 40	2 1/4	113	90	-	-	1004204	

^{*} PVDF/Teflon version

PCB Foot Valve

Housing made of PP, seals made of FKM, with filter meshes and ball check (glass).

DN 10, DN 15 with union nut and PP tube nozzle

DN 20 to DN 40 no connection parts

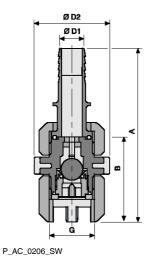
	G	В	Ø D2	Α	Ø D1	Order no.	
		mm	mm	mm	mm		
DN 10	3/4	59	40	101	16	809464	
DN 15	1	66	47	142	20	924515	
DN 20	1 1/4	77	55	_	_	803723	
DN 25	1 1/2	84	60	-	-	803724	
DN 32*	2	98	74	_	-	1006434	
DN 40*	2 1/4	108	83	-	-	1029475	

^{*} PVDF/Teflon version

PVT foot valve

Housing made of PVDF, ball seat made of PTFE + 25% carbon, PTFE seals, with filter meshes and non-return valve (ceramic).

DN 10, DN 15 with union nut and PP tube nozzle


DN 20 to DN 40 no connection parts

	G	В	Ø D2	Α	Ø D1	Order no.	
		mm	mm	mm	mm		
DN 10	3/4	58	36	92	16	1029471	
DN 15	1	64	48	131	20	1029472	
DN 20	1 1/4	78	58	-	-	1029473	
DN 25	1 1/2	81	65	-	-	1029474	
DN 32	2	98	74	-	_	1006434	
DN 40	2 1/4	108	83	-	-	1029475	

Motor Driven Metering Pumps

1.8 Hydraulic/Mechanical Accessories

Foot valve PVT-FDA

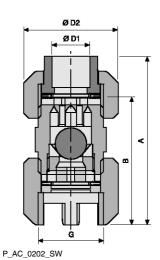
"Physiologically safe (FDA) in respect of wetted materials" design.

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

FDA guidelines:

■ Material PTFE: FDA No. 21 CFR § 177.1550

Material PVDF: FDA No. 21 CFR § 177.2510


Housing made of PVDF, seals made of PTFE, with filter meshes and check ball (ceramic).

DN 10, DN 15 with union nut and hose nozzle

DN 20, DN 25 no connection parts

	G	В	Ø D2	Α	Ø D1	Order no.	
		mm	mm	mm	mm		
DN 10	3/4	58	36	92	16	1078269	
DN 15	1	64	48	131	20	1078270	
DN 20	1 1/4	78	58	_	-	1078271	
DN 25	1 1/2	81	65	-	-	1078272	

Available from March 2017

ØD

Foot Valve TTT

Housing made of PTFE, seals made of PTFE, with filter meshes and ball check (ceramic).

DN 10, DN 15 with union nut and insert DN 20, DN 25 no connection parts

	G	В	Ø D2	Α	Ø D1	Order no.
		mm	mm	mm	mm	
DN 10	3/4	59	40	101	16	809466
DN 15	1	66	47	142	20	924517
DN 20	1 1/4	81	57	-	_	803725
DN 25	1 1/2	86	64	-	-	803726
DN 32*	2	98	74	-	_	1006434
DN 40	2 1/4	116	89	-	-	1004205

PVDF/Teflon version

Foot Valve SST

Housing made of SS, PTFE + 25% ball seat, PTFE seals, with filter meshes and ball check (1.4571/1.4581).

DN 10, DN 15 with union nut and insert DN 20, DN 25 no connection parts

	G	Α	В	Rр	ØD	Order no.	
		mm	mm		mm		
DN 10	3/4	75	56	3/8	37	809467	
DN 15	1	83	59	1/2	48	924518	
DN 20	1 1/4	_	73	-	55	803727	
DN 25	1 1/2	-	82	-	63	803728	
DN 32	2	_	92	-	75	1006435	
DN 40	2 1/4	-	109	-	90	1004206	

P_AC_0204_SW

P_AC_0204_SW

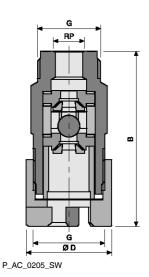
Foot valve SST-FDA

"Physiologically safe (FDA) in respect of wetted materials" design

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

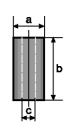
FDA guidelines:

- Material PTFE: FDA No. 21 CFR § 177.1550
- Material PVDF: FDA No. 21 CFR § 177.2510


Housing made of SS, PVDF ball seat, PTFE seals, with filter meshes and non-return valve (1/4571/1.4581).

DN 10, DN 15 with union nut and insert DN 20, DN 25 no connection parts

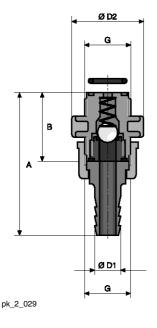
	G	Α	В	Rp	ØD	Order no.	
		mm	mm		mm		
DN 10	3/4	75	56	3/8	37	1078275	
DN 15	1	83	59	1/2	48	1078289	
DN 20	1 1/4	_	73	_	55	1078290	
DN 25	1 1/2	-	82	-	63	1078291	


Available from March 2017

Foot Valve SST for High-Pressure Metering Pumps

	G	В	Rp	ØD	Order no.	
		mm		mm		
DN 10	3/4	70	1/4	41	803730	
DN 10	3/4	70	3/8	41	803731	

Ceramic Weight for Vertical Alignment


	ØΑ	В	ØС	Weight	Order no.
	mm	mm	mm	g	
Size 3	40	50	24	70	1030189

pk_1_082

1.8.2 Injection Valves for Motor Driven Metering Pumps

For connecting the metering line to the metering station; metering valves consist of a non-return ball valve and a Hastelloy C spring (0.5 bar pre-pressure) and can be installed in any position. Used for generating pressure and preventing backflow. Materials match those in the pump liquid ends. Metering valve sizes DN 10 and 15 come with the required union nut and insert/hose socket.

Important: Metering valves are not suitable for use as tight-sealing shut-off elements.

PPE Injection Valve

PP housing, EPDM seals with spring-loaded ball check (glass), priming pressure approx. $0.5\,\mathrm{bar}$.

DN 10, DN 15 with union nut and PP tube nozzle

DN 20 to DN 40 no connection parts

Operating range

 $25~^{\circ}\text{C}$ - max. operating pressure 16 bar $50~^{\circ}\text{C}$ - max. operating pressure 9 bar

	G	В	Ø D2	Α	Ø D1	Order no.
		mm	mm	mm	mm	
DN 10	3/4	41	40	83	16	809461
DN 15	1	43	47	108	20	924521
DN 20	1 1/4	55	55	-	_	803710
DN 25	1 1/2	60	58	-	-	803711
DN 32*	2	68	70	-	-	1002783
DN 40	2 1/4	85	84	-	-	804761

^{*} PVDF/Teflon version

PCB Injection Valve

PVC housing, FKM seals with spring-loaded ball check (glass), priming pressure approx. 0.5 bar.

DN 10, DN 15 with union nut and PP tube nozzle

DN 20 to DN 40 no connection parts

Operating range

25 °C - max. operating pressure 16 bar

45 °C - max. operating pressure 7 bar

	G	В	Ø D2	Α	Ø D1	Order no.	
		mm	mm	mm	mm		
DN 10	3/4	41	40	83	16	809460	
DN 15	1	43	47	108	20	924520	
DN 20	1 1/4	55	55	-	_	803712	
DN 25	1 1/2	60	58	-	-	803713	
DN 32*	2	68	70	-	_	1002783	
DN 40	2 1/4	85	84	-	-	804760	

^{*} PVDF/Teflon version

Injection valve PVT

PVDF housing, PTFE + 25% carbon ball seat, PTFE seals, with spring-loaded non-return sphere (ceramic), priming pressure approx. 0.5 bar.

DN 10, DN 15 with union nut and PP tube nozzle

DN 20 to DN 40 no connection parts

Operating range

 $25~^{\circ}\text{C}$ - max. operating pressure 16 bar $65~^{\circ}\text{C}$ - max. operating pressure 10 bar

	G	В	Ø D2	Α	Ø D1	Order no.	
		mm	mm	mm	mm		
DN 10	3/4	40	36	84	16	1029476	
DN 15	1	43	48	110	20	1029477	
DN 20	1 1/4	55	52	-	_	1029478	
DN 25	1 1/2	61	56	-	-	1029479	
DN 32	2	68	70	-	-	1002783	
DN 40	2 1/4	85	81	-	-	1029480	

Injection valve PVT - FDA

"Physiologically safe (FDA) in respect of wetted materials" design.

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

FDA guidelines:

- Material PTFE: FDA No. 21 CFR § 177.1550
- Material PVDF: FDA No. 21 CFR § 177.2510

PVDF housing, PTFE seals, with spring-loaded non-return sphere (ceramic), priming pressure approx. 0.5 bar.

DN 10, DN 15 with union nut and hose nozzle

DN 20, DN 40 no connection parts

Operating range

25 $^{\circ}\text{C}$ - max. operating pressure 16 bar

65 °C - max. operating pressure 10 bar

	G	В	Ø D2	Α	Ø D1	Order no.	
		mm	mm	mm	mm		
DN 10	3/4	40	36	84	16	1078237	
DN 15	1	43	48	110	20	1078238	
DN 20	1 1/4	55	52	-	_	1078239	
DN 25	1 1/2	61	56	-	_	1078240	

Available from March 2017

pk_2_030

TTT Injection Valve

PTFE housing and seals with spring-loaded ball check (ceramic), priming pressure approx. 0.5 bar.

DN 10, DN 15 with union nut and insert DN 20, DN 25 no connection parts

Operating range

25 °C - max. operating pressure 10 bar 90 °C - max. operating pressure 5 bar

	G	В	Ø D2	Α	Ø D1	Order no.	
		mm	mm	mm	mm		
DN 10	3/4	38	36	57	16	809462	
DN 15	1	43	48	63	20	924522	
DN 20	1 1/4	55	50	-	_	803714	
DN 25	1 1/2	60	58	-	-	803715	
DN 32*	2	68	70	-	_	1002783	
DN 40	2 1/4	85	84	-	-	804762	

^{*} PVDF/Teflon version

SST Injection Valve

Housing made of stainless steel, PTFE + 25% carbon ball seat, PTFE seals non-return sphere (stainless steel material no. 1.4571 / stainless steel no. 1.4581) spring-loaded, priming pressure approx. 0.5 bar.

DN 10, DN 15 with union nut and insert DN 20, DN 25 no connection parts

Applications

90 °C - max. operating pressure, see table

	G	Max. pressure	В	Ø D2	A	Ø D1	Order no.
		bar	mm	mm	mm		
DN 10	3/4	320	38	36	55	3/8	809463
DN 15	1	240	43	48	63	1/2	924523
DN 20	1 1/4	130	55	55	-		803716
DN 25	1 1/2	70	60	58	-		803717
DN 32	2	45	69	68	-		1002801
DN 40	2 1/4	25	85	84	-		804763

Injection valve SST - FDA

"Physiologically safe (FDA) in respect of wetted materials" design.

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

FDA guidelines:

Material PTFE: FDA No. 21 CFR § 177.1550 Material PVDF: FDA No. 21 CFR § 177.2510

Housing made of stainless steel, PVDF ball seat, PTFE seals with non-return sphere (stainless steel material no. 1.4571 / stainless steel no. 1.4581) spring-loaded, priming pressure approx. 0.5 bar.

DN 10, DN 15 with union nut and insert DN 20, DN 25 no connection parts

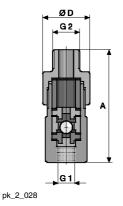
Applications

90 °C - max. operating pressure, see table

	G	Max. pressure	В	Ø D2	Α	Ø D1	Order no.	
		bar	mm	mm	mm			
DN 10	3/4	320	38	36	55	3/8	1078251	
DN 15	1	240	43	48	63	1/2	1078252	
DN 20	1 1/4	130	55	55	_		1078266	
DN 25	1 1/2	70	60	58	-		1078267	

Available from March 2017

Injection valve SST for high-pressure metering pumps


To fit metering pumps of the product ranges Sigma, Meta and Makro TZ-HK.

Housing and valve spring made of stainless steel no. 1.4571, ball made of stainless steel no. 1.4401, PTFE seals, priming pressure approx. 0.1 bar.

Applications

90 °C - max. operating pressure, see table

	Max. pressure	G1	G2	ØD	Α	Order no.
	bar			mm	mm	
DN 8	320	Rp 1/4	Rp 1/2	42	85	803732
DN 10	190	Rp 3/8	Rp 1/2	42	90	803733

PVDF Metering Valve Adapter

			-	
•		В		
	` -	C	_	
				* *
			*	ш
Щ			▀▔	
			路	8 01
			0	Ø
			B B	B B

P_AC_0201_SW

E	Α	В	С	ØD	Ø D1	Ø D2	Order no.
	mm	mm	m	mm	mm	mm	
R 3/4	93	63	49	42	22	15	1022052
R 1	95	65	50	47	27	18	1022053
G 1 1/4*	150	119	104	56	27	18	1040722
G 1 1/2*	171	135	118	64	31	20	1040723

^{*} In set with 1 x FKM and 1 x EPDM O-ring.

1.8.3 Back Pressure Valves / Relief Valves for Motor Driven Metering Pumps

Universal back pressure valves of the DHV-U product range are back pressure-free piston diaphragm valves with an internal flow. They are used to generate a constant back pressure and as relief valves. Can be installed at any location in the pipework system.

Back pressure valves are used to generate a constant back pressure for precise pumping and to protect against over-metering where there is a free outlet or fluctuating back pressure or when metering into a vacuum. They are also used in conjunction with pulsation dampers to generate low-pulsation metering.

Relief valves are used to protect pumps, pipes and fittings from over pressure, in the event of incorrect operation or blockages in the bypass. In the event of a malfunction, the pump pumps around the circuit or back into the storage tank.

Important: Back pressure valves cannot be used as absolutely leak-tight shut-off devices. Take appropriate safety precautions when handling hazardous media. Relief valves are not safety valves by their definition as per DIN EN ISO 4126-1.

Important: When used as relief valves in conjunction with sticky media (e.g. lime milk), appropriate safety precautions should be taken. (e.g. flushing after a response)

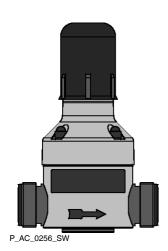
G

Order no.

Back Pressure Valve / Relief Valve Type DHV-U

Nominal diameter

Adjustable pressure 0.5 – 10 bar


Application of PPE/PPB/PCE/PCB:

20 °C - max. operating pressure 10 bar

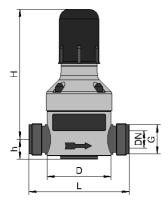
Application of PVT/SST:

Type

30 °C - max. operating pressure 10 bar

туре	Nominal diameter	G	Order no.
PPE	DN 10	3/4	1037285
PPB	DN 10	3/4	1038133
PCE	DN 10	3/4	1038144
PCB	DN 10	3/4	1037765
PVT	DN 10	3/4	1037767
SST	DN 10	3/4	1043194
PPE	DN 15	1	1036816
PPB	DN 15	1	1038145
PCE	DN 15	1	1038146
PCB	DN 15	1	1037764
PVT	DN 15	1	1037766
SST	DN 15	1	1043193
PPE	DN 20	1 1/4	1037284
PPB	DN 20	1 1/4	1038147
PCE	DN 20	1 1/4	1038148
PCB	DN 20	1 1/4	1037775
PVT	DN 20	1 1/4	1037777
SST	DN 20	1 1/4	1043192
PPE	DN 25	1 1/2	1036633
PPB	DN 25	1 1/2	1038149
PCE	DN 25	1 1/2	1038150
PCB	DN 25	1 1/2	1037774
PVT	DN 25	1 1/2	1037776
SST	DN 25	1 1/2	1043191
PPE	DN 32	2	1051517
PPB	DN 32*	2	1051522
PCE	DN 32*	2	1051514
PCB	DN 32*	2	1051520
PVT	DN 32*	2	1051503
SST	DN 32*	2	1051516

Туре	Nominal diameter	G	Order no.
PPE	DN 40*	2 1/4	1051518
PPB	DN 40*	2 1/4	1051521
PCE	DN 40*	2 1/4	1051501
PCB	DN 40*	2 1/4	1051519
PVT	DN 40*	2 1/4	1051502
SST	DN 40*	2 1/4	1051515


^{*}Available from March 2017

Materials

Type	Housing/Connectors	Plungers	Plunger Seal	Seal/Connectors
PPE	PP	PVDF	EPDM	EPDM
PPB	PP	PVDF	FKM	FKM
PCE	PVC	PVDF	EPDM	EPDM
PCB	PVC	PVDF	FKM	FKM
PVT	PVDF	PVDF	PTFE*	FKM
SST	1.4404	1.4404	PTFE*	PTFE

^{*} Cover ring made of PTFE/FKM

Dimensions of DHV-U (PP, PVC, PVDF design)

DN	G	Н	L	h	D	m	В
		mm	mm	mm	mm		mm
10	3/4	144*	118	24	79	M6	40
15	1	144*	118	24	79	M8	40
20	1 1/4	196*	150	37	99	M8	46
25	1 1/2	196*	150	37	99	M6	46
32	2	252*	200	54	140	M8	65
40	2 1/4	252*	200	54	140	M8	65

Approximate values

P_AC_0256_m

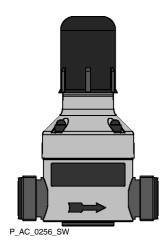
P_MOZ_0005_SW

Dimensions of DHV-U (SS version)

DN	G	н	L	h	D	m	В
		mm	mm	mm	mm		mm
10	3/4	144*	118	20	79	M6	40
15	1	144*	118	20	79	M6	40
20	1 1/4	196*	150	30	99	M6	46
25	1 1/2	196*	150	30	99	M6	46
32	2	252*	200	37	139.5	M8	65
40	2 1/4	252*	200	37	139.5	M8	65

 ^{*} Approximate values

Relief valve type DHV-U FDA design


Adjustable pressure

Application of PPE/PPB/PCE/PCB

20 $^{\circ}\text{C}$ - max. operating pressure 10 bar

Application of PVT/SST

30 °C - max. operating pressure 10 bar

PPE DN 10 3/4	1076578
PVT DN 10 3/4	1076579
SST DN 10 3/4	1076532
PPE DN 15 1	1076580
PVT DN 15 1	1076581
SST DN 15 1	1076531
PPE DN 20 1 1/4	1076582
PVT DN 20 1 1/4	1076583
SST DN 20 1 1/4	1076597
PPE DN 25 1 1/2	1076585
PVT DN 25 1 1/2	1076586
SST DN 25 1 1/2	1076584
PPE DN 32 2	1076587
PVT DN 32 2	1076588
SST DN 32 2	1076589
PPE DN 40 2 1/4	1076590
PVT DN 40 2 1/4	1076591
SST DN 40 2 1/4	1076592

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the following FDA guidelines:

Material	Guideline
PTFE	21CFR177.1510
PVDF	21CFR177.2510
PP	21CFR177.1520
EPDM/FKM	21CFR177.2600

Materials

Type	Housing/Connectors	Plungers	Plunger Seal	Seal/Connectors
PPE	PP	PVDF	EPDM	EPDM
PVT	PVDF	PVDF	PTFE*	FKM
SST	1.4404	1.4404	PTFE*	PTFE

^{*} Cover ring made of PTFE/FKM

Dimensions of DHV-U (FDA) (PP, PVC, PVDF design)

DN	G	н	L	h	D	m	В
		mm	mm	mm	mm		mm
10	3/4	144*	118	24	79	M6	40
15	1	144*	118	24	79	M6	40
20	1 1/4	196*	150	37	99	M6	46
25	1 1/2	196*	150	37	99	M6	46
32	2	252	200	54	140	M8	65
40	2 1/4	252	200	54	140	M8	65

Approximate values

P_AC_0256_m

P_MOZ_0005_SW

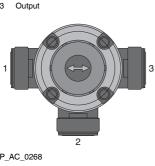
Dimensions of DHV-U (FDA) (SS design)

DN	G	н	L	h	D	m	В
		mm	mm	mm	mm		mm
10	3/4	144*	118	20	79	M6	40
15	1	144*	118	20	79	M6	40
20	1 1/4	196*	150	30	99	M6	46
25	1 1/2	196*	150	30	99	M6	46
32	2	252	200	37	140	M8	65
40	2 1/4	252	200	37	140	M8	65

Approximate values

Relief valve type DHV-UR

The universal relief valves type DHV-UR are, like all valves in the DHV-U product range, are continuously adjustable plunger diaphragm valves with an internal flow. In the event of impermissible overpressure, the internal plunger diaphragm opens the second output power, the bleeder output. Can be installed at any location in the pipework system. Very low pressure losses when the relief valve is closed owing to its virtually free pipe cross-section Simple spare parts management, the wear parts (pressure spring, diaphragms, plunger seal, connector set seal) correspond to the DHV-U valve product range.

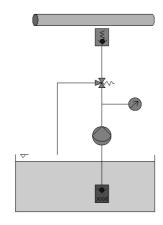

Adjustable pressure

Application of PPE/PPB/PCE/PCB

20 °C - max. operating pressure 10 bar

Application of PVT/SST

30 °C - max. operating pressure 10 bar



	2
P_AC_0268	

Bleeder output

Input Output

P AC 0267 Input Bleeder output

AP_0003

Туре	Nominal diameter	G	Order no.
PPE	DN 10	3/4	1061337
PPB	DN 10	3/4	1061341
PCE	DN 10	3/4	1061339
PCB	DN 10	3/4	1061343
PVT	DN 10	3/4	1061365
SST	DN 10	3/4	1061550
PPE	DN 15	1	1061336
PPB	DN 15	1	1061340
PCE	DN 15	1	1061338
PCB	DN 15	1	1061342
PVT	DN 15	1	1061364
SST	DN 15	1	1061551
PPE	DN 20	1 1/4	1061367
PPB	DN 20	1 1/4	1061371
PCE	DN 20	1 1/4	1061369
PCB	DN 20	1 1/4	1061373
PVT	DN 20	1 1/4	1061375
SST	DN 20	1 1/4	1061569
PPE	DN 25	1 1/2	1061366
PPB	DN 25	1 1/2	1061370
PCE	DN 25	1 1/2	1061368
PCB	DN 25	1 1/2	1061372
PVT	DN 25	1 1/2	1061374
SST	DN 25	1 1/2	1061570

Materials used

Type	Housing/Connectors	Plungers	Plunger Seal	Seal/Connectors
PPE	PP	PVDF	EPDM	EPDM
PPB	PP	PVDF	FKM	FKM
PCE	PVC	PVDF	EPDM	EPDM
PCB	PVC	PVDF	FKM	FKM
PVT	PVDF	PVDF	PTFE*	FKM
SST	1.4404	1.4404	PTFE*	PTFE

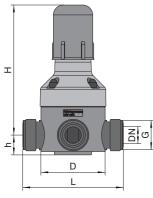
^{*} Cover ring made of PTFE/FKM

G

3/4

1 1/4

Dimensions of DHV-UR (PP, PVC, PVDF design)


 $\mathbf{m}\mathbf{m}$

144*

144*

196*

196*

25	1 1/2

DN

10

15

20

Approximate values

P_AC_0267_V2

L/3
P_AC_0268_V2

Approximate values

Dimensions of DHV-UR (SS design)

DN	G	н	L	h	D	m	В
		mm	mm	mm	mm		mm
10	3/4	144*	118	20	79	M6	35
15	1	144*	118	20	79	M6	35
20	1 1/4	196*	150	30	99	M6	46
25	1 1/2	196*	150	30	99	M6	46

mm

118

118

150

150

mm

24

24

37

37

D

 $\mathbf{m}\mathbf{m}$

79

79

99

99

В

mm

35

35

46

46

M6

M6

M6

M6

Relief valve type DHV-UR, FDA design

Adjustable pressure

 $0.5 - 10 \, \text{bar}$

20 °C - max. operating pressure 10 bar

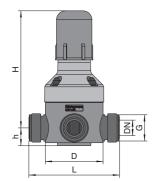
Application of PVT/SST

30 °C - max. operating pressure 10 bar

PPE DN 10 3/4 1075828 PVT DN 10 3/4 1075830 SST DN 10 2/4 1075847	
CCT DN 10 2/4 1075947	
SST DN 10 3/4 1075847	
PPE DN 15 1 1075827	
PVT DN 15 1 1075829	
SST DN 15 1 1075846	
PPE DN 20 1 1/4 1075833	
PVT DN 20 1 1/4 1075845	
SST DN 20 1 1/4 1075849	
PPE DN 25 1 1/2 1075832	
PVT DN 25 1 1/2 1075844	
SST DN 25 1 1/2 1075848	

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the following FDA guidelines:

FDA guidelines:


Material	Guideline
PTFE	21CFR177.1510
PVDF	21CFR177.2510
PP	21CFR177.1520
EPDM/FKM	21CFR177.2600

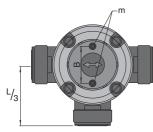
Materials used

Type	Housing/Connectors	Plungers	Plunger Seal	Seal/Connectors
PPE	PP	PVDF	EPDM	EPDM
PVT	PVDF	PVDF	PTFE*	FKM
SST	1.4404	1.4404	PTFE*	PTFE

^{*} Cover ring made of PTFE/FKM

Dimensions of DHV-UR (FDA) (PP, PVC, PVDF design)

P_AC_0267_V2


P_AC_0267

P_AC_0268_V3

DN	G	Н	L	h	D	m	В
		mm	mm	mm	mm		mm
10	3/4	144*	118	24	79	M6	35
15	1	144*	118	24	79	M6	35
20	1 1/4	196*	150	37	99	M6	46
25	1 1/2	196*	150	37	99	M6	46

Approximate values

Dimensions of DHV-UR (FDA) (SS design)

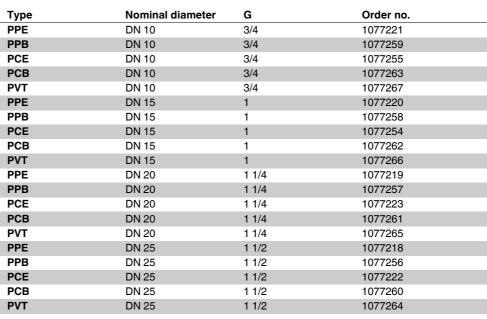
P_AC_0268_V2

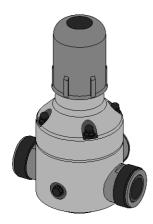
DN	G	н	L	h	D	m	В
		mm	mm	mm	mm		mm
10	3/4	144*	118	20	79	M6	35
15	1	144*	118	20	79	M6	35
20	1 1/4	196*	150	30	99	M6	46
25	1 1/2	196*	150	30	99	M6	46

Approximate values

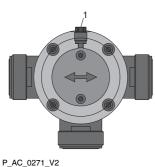
Relief valve type DHV-UR M configured for manometer

The relief valves DHV-UR with M designs are configured with a plug for manometer installation. Manometer with threaded socket G 1/4" (ISO 228) can be fitted by the customer directly to the relief valve via the additional housing opening. Standard manometers with part number are available for neutral media. This also enables savings in terms of installation.


Adjustable pressure 0.5 – 10 bar


Application of PPE/PPB/PCE/PCB:

20 °C - max. operating pressure 10 bar


Application of PVT/SST:

30 °C - max. operating pressure 10 bar

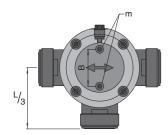
P_AC_0272

1: Plug for manometer installation

Materials used

Туре	Housing/Connectors	Plungers	Plunger Seal	Seal/Connectors
PPE	PP	PVDF	EPDM	EPDM
PPB	PP	PVDF	FKM	FKM
PCE	PVC	PVDF	EPDM	EPDM
PCB	PVC	PVDF	FKM	FKM
PVT	PVDF	PVDF	PTFE*	FKM

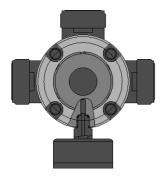
^{*} Cover ring made of PTFE/FKM


O N

Dimensions of DHV-UR M (PP, PVC, PVDF design)

DN	G	н	L	h	D	m	В
		mm	mm	mm	mm		mm
10	3/4	144*	118	24	79	M6	35
15	1	144*	118	24	79	M6	35
20	1 1/4	196*	150	37	99	M6	46
25	1 1/2	196*	150	37	99	M6	46

Approximate values


P_AC_0267_V2

P_AC_0271_V2

Pipe spring manometer

Pipe spring manometers in accordance with DIN EN 837-1 for neutral media for use with relief valves DHV-UR design M. When ordered, the manometer is supplied with the relief valve.

P_AC_0269

Nominal diameter 63 mm Display range 0 - 16 bar Housing material 1.4571 **Material connector** Brass

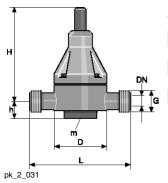
Connector Threaded assembly G 1/4" (ISO 228)

Connector position radial at bottom Filling liquid Glycerine

	Order no.
Pipe spring manometer	792726

Back Pressure Valve / Relief Valve Type DHV 712-R

Adjustable pressure


0.5 – 10 bar

Applications of PPE / PCB

20 °C - max. operating pressure 10 bar

Applications of PVT / TT / SS

30 $^{\circ}\text{C}$ - max. operating pressure 10 bar

Туре	G	Nominal diameter	Order no.
TT	3/4	DN 10	1000059
TT	1	DN 15	1000060
TT	1 1/4	DN 20	1000061
TT	1 1/2	DN 25	1000062
TT	2	DN 32	1000063
π	2 1/4	DN 40	1000064

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

H DN G

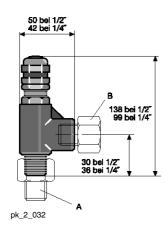
pk_2_031

Dimensions of DHV 712-R

DN	G	Н	L	h	D	m
		mm	mm	mm	mm	
32	2	260*	205	59** / 37***	147	M8
40	2 1/4	260*	205	59** / 37***	147	M8

*= Approx. values;

** = PP, PVC, PVDF;


*** = TT, SS

Materials

Type	Housing/Connectors	Plungers	Plunger Seal	Seal/Connectors
TT	PTFE with carbon	PTFE ²	PTFE ³	PTFE ³

- ² PTFE (white)
- 3 Packing ring PTFE/FKM

Back Pressure Valve / Relief Valve for High-Pressure Systems

Use as a pressure relief valve (adjustable) and as a back pressure valve. Overflow valve and corresponding spring must be ordered separately.

Material: stainless steel 316/FKM Temperature range: -18 °C to 120 °C

Recommended Use up to 200 l/h

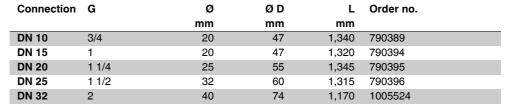
	Connection	Order no.
Overflow valve	1/4" NPT inner and outer thread	202505
Spring for pressure range	Spring colour	Order no.
3.4 – 24 bar	blue	202519
24.0 – 52 bar	yellow	202520
52.0 - 103 bar	violet	202525
103.0 - 155 bar	orange	202524
155.0 – 207 bar	brown	202523
207.0 - 276 bar	white	202522
276.0 - 345 bar	red	202521

Recommended Use up to 300 l/h

Reducing Pipe Nipple

Connection	Order no.
1/4" NPT internal – 1/4" NPT external (A)	359378
1/4" NPT external – 1/4 Rp internal (B)	359379
1/2" NPT internal – 1/2" NPT external (A)	1005503
1/2" NPT external – 1/2 Rp internal (B)	1005504

For use as an adjustable safety relief valve and as a back pressure valve. Relief valve and corresponding spring must be ordered separately



1.8.4

Suction Lances, Suction Assemblies and Level Switches for Motor **Driven Metering Pumps**

PPE Suction Assembly for 1,000 Litre Tank

Suction assembly without level switch for connection to 1,000 litre tanks, comprising a support pipe, foot valve and threaded fitting. The length L of the support pipe can be adjusted (shortened) by the customer.

Note: In applications with a hose the suction assembly/hose connector kit, consisting of a PVDF screw-in nozzle and a PTFE composite seal, can be used.

Suction Assembly PCB for 1,000 Litre Storage Tank

Connection	G	Ø	ØD	L	Order no.	
		mm	mm	mm		
DN 10	3/4	20	47	1,340	790387	
DN 15	1	20	47	1,320	790391	
DN 20	1 1/4	25	55	1,345	790392	
DN 25	1 1/2	32	60	1,315	790393	
DN 32	2	40	74	1,170	1005525	

Suction assembly without level switch for connection to 1,000 litre tanks, comprising a support pipe, foot valve and threaded fitting. The length L of the support pipe can be adjusted (shortened) by the customer.

Note: In applications with a hose the suction assembly/hose connector kit, consisting of a PVDF screw-in nozzle and a PTFE composite seal, can be used.

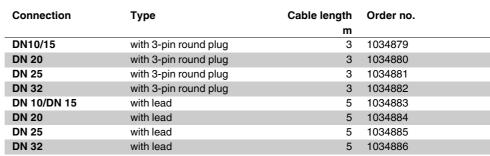
Please note: The product contains connections bonded with Tangit. Always note the durability of Tangit adhesive.

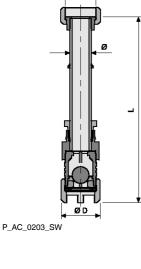
Level Switch Kit Complete, PVDF, Two-Stage with Round Connector or Lead

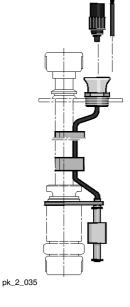
The level switch kit can be ordered together with the suction fittings DN 10 - DN 32.

For level monitoring in the storage tank, two-phase with pre-alarm signalling and deactivation of the metering pump after a further level decrease of 30 mm.

Switching mode: for level shortage 2 x NC


Technical data:


Max. switching voltage: 100 V Switching current: 0.5 A Switching capacity: 5 W/5 VA Temperature range: - 10 °C to 65 °C


IP rating: IP 67

Material:

Body level switch PVDF, float PE, mounting strap PVDF, cable bracket PE, anti-kink device PE, cable PE.

P_AC_0252_SW

- A Overall length
- B Immersion depth
- C Diameter of the immersion tube
- D Threaded connector adjustment range
- E Warning level adjustment rangeF Switch-off level adjustment range

PPE Universal Suction Lance

Universal suction lance made of PP in 4 sizes for use in canisters, barrels or containers. The suction lance is configured as standard with return, ventilation function and 2-stage level monitoring. The height-adjustable level switch and tank threaded connectors ensure flexible adaptation to the process or storage tank height. In addition, the suction tube length can easily be shortened by the customer. A PTFE check ball is incorporated and prevents the suction line from running dry. With IBC container suction lances (1039399, 1046672), the screw lid DN150 can be installed by the customer onto other G2" vent openings.

Note: Special designs are available on request.

The suction lance is supplied with all additional parts in cardboard packaging.

Material version: PP with EPDM seals.

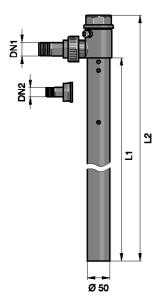
Suction connector is not supplied ready mounted. Fittings and pressure hose nozzles in DN 10, DN 15, DN 20, DN 25 (not for canisters) plus FKM seal do form part of the scope of delivery.

Return connector is not supplied ready mounted. Fittings and pressure hose nozzles in DN 10, DN 15, plus an FKM blanking plug and seal do form part of the scope of delivery.

Level: In drum and tank lances the level switches are protected by tube pieces. The lance level output is in the form of an M12 plug. Please order the level signal cable for connection to ProMinent metering pumps or a PLC or terminal box separately.

General Electrical Accessories → 1-84

Universal suction lance	A	В	С	Total adjustment range			Order no.
				D	E	F	
	mm	mm	mm	mm	mm	mm	
For canister 20 I	542	405	41	100	250	200	1039206
For canister 20 -60 I	584	447	41	100	300	200	1038817
For drum 200 I	1,072	935	51	50	700	700	1039397
For container IBC	1,162	1,025	51	50	800	800	1039399


PPE Universal Suction Lance, "Physiologically Safe" Design

The universal suction lance is also available as a "Physiologically safe (FDA) in respect of wetted materials" design.

Universal suction lance	Α	В	С	Total adjustment range			Order no.
				D	E	F	
	mm	mm	mm	mm	mm	mm	
For 20-litre canister	542	405	41	100	250	200	1046668
For 20 – 60-litre canister	584	447	41	100	300	200	1046670
For 200-litre drum	1,072	935	51	50	700	700	1046671
For IBC containers*	1,162	1,025	51	50	800	800	1046672

^{*}Replace the screw lid when using FDA containers.

pk_2_100

Suction Lance with Two-Stage Level Switch

Suction lance with 2-stage level switch in \emptyset 50 PVC protection tube with check valve for DN 10-DN 25, clack valve in DN 32 (valve is not removable).

For sizes DN 10/15 and DN 20/25, the connection parts in both sizes and a blanking plate for the return form part of the scope of supply. For the DN 32 suction lance a return line is not possible. Drum suction lances are equipped with a drum lid.

2-stage level switch is wired to a terminal in the head.

The level sensor cable must be ordered separately.

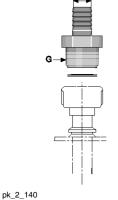
Special designs (materials, functions, Dytex adhesive etc.) are available on request.

Reed cable with 3-pin round plug, PE \rightarrow 1-84

* Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

Suction Lance for 200/600 I Drum

Туре	Suction connector DN 1	Return DN 2	Seals	L1	L2	Order no.	
				mm	mm		
PCB	10/15	10/15	FKM	1000	1100	1037748	
PCE	10/15	10/15	EPDM	1000	1100	1037749	
PCB	20/25	20/25	FKM	1000	1100	1037750	
PCE	20/25	20/25	EPDM	1000	1100	1037751	
PCB	32	_	FKM	1000	1100	1037752	
PCE	32	-	EPDM	1000	1100	1037753	


Suction Lance for 1000 I Tank

Туре	Suction connector DN 1	Return DN 2	Seals	L1	L2	Order no.
				mm	mm	
PCB	10/15	10/15	FKM	1200	1300	1037722
PCE	10/15	10/15	EPDM	1200	1300	1037723
PCB	20/25	20/25	FKM	1200	1300	1037744
PCE	20/25	20/25	EPDM	1200	1300	1037745
PCB	32	-	FKM	1200	1300	1037746
PCE	32	-	EPDM	1200	1300	1037747

Intake Fitting - Hose Connection Kit

Consisting of PVDF threaded socket and a PTFE-formed composite seal.

Suitable for PPE Suction assembly for 1,000 I tank → 1-64

Connection	G	Material	ØD	Order no.
			mm	
DN 10	3/4	PVDF	16	1029486
DN 15	1	PVDF	20	1029487
DN 20	1 1/4	PVDF	25	1029488
DN 25	1 1/2	PVDF	32	1029489
DN 32	2	PVDF	40	1029490

1.8.5 **Fittings**

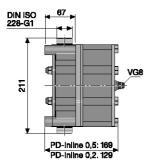
Flushing Assemblies for Motor Driven Metering Pumps

Flushing assemblies for flushing and cleaning liquid end, metering line and metering valve as well as for preventing deposits.

PPE Flushing Device

Connection	G	Order no.
DN 10	3/4	809917
DN 15	1	809919
DN 20	1 1/4	809921
DN 25	1 1/2	809923

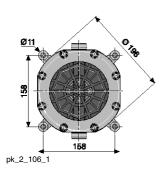
PCB Flushing Assembly


Connection	G	Order no.
DN 10	3/4	809926
DN 15	1	803960
DN 20	1 1/4	803961
DN 25	1 1/2	803962
DN 40	2 1/4	803963

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive. Automatic flushing equipment for the fully automatic flushing of the pump head is possible on request.

1.8.6

Pulsation Damper



PVDF In-Line Pulsation Damper

Function: Hydropneumatic accumulator with baffle

The PVDF accumulator with PTFE diaphragm offers outstanding resistance to chemicals and can therefore be used in connection with a large number of different liquids. The pulsation damper has two liquid connections and can therefore be installed directly in the piping system or be installed diagonally using a blanking plug kit. The baffle in the liquid valve directs the volume flow straight at the diaphragm. This ensures direct contact of the volume flow with the diaphragm. Fluctuations in volume flow are thus optimally balanced out by the enclosed gas volume.

Important: Pulsation dampers should be protected by an overflow valve.

Туре	Volume	Max. pressure	Connection	Order no.	
	I	bar			
PD In-line	0.2	10	G 1 – DN 15	1026252	
PD In-line	0.5	10	G 1 – DN 15	1026736	
PD-Inline	0.2	16	G 1 – DN 15	1033446	
PD-Inline	0.5	16	G 1 – DN 15	1033447	
PD-Inline	0.2	25	G 1 – DN 15	1036154	
PD In-line	0.5	25	G 1 – DN 15	1036155	

The priming pressure is approximately 0.6 x the operating pressure. Maximum medium temperature, $65 \,^{\circ}\text{C}$. Connection parts must be ordered separately.

Filling of the reservoir with nitrogen takes place via the VG8 gas filling connector or with compressed air using a standard filling valve (e.g. a car tyre valve).

Attention: If using combustible liquids, nitrogen must be used as a filling gas.

Do not use oxygen under any circumstances!

Configuration: DGRL97/23/EC, other acceptances / countries upon request

Fluid group: 1 and 2

Certificates: Manufacturer's test certificate M DIN55350-18

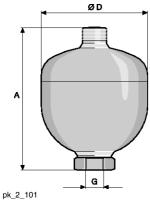
Wetted materials - FDA physiologically safe

Manufacturer: HYDAC Technology

Connection/Adapter Kits

Consisting of PTFE-formed composite seal, insert/adapter and union nut.

Connection PD In-line	Connection Piping	Material	Order no.
G 1 – DN 15	DN 10	PP	1029424
G 1 – DN 15	DN 10	PVC	1029425
G 1 – DN 15	DN 10	PVDF	1029426
G 1 – DN 15	DN 15	PP	1029443
G 1 – DN 15	DN 15	PVC	1029444
G 1 – DN 15	DN 15	PVDF	1029445
G 1 – DN 15	DN 20	PP	1029427
G 1 – DN 15	DN 20	PVC	1029428
G 1 – DN 15	DN 20	PVDF	1029429
G 1 – DN 15	DN 25	PP	1029430
G 1 – DN 15	DN 25	PVC	1029431
G 1 – DN 15	DN 25	PVDF	1029432


Accessories/Spare Parts

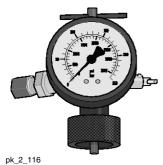
	Material	Order no.
Set of plugs	PVDF/PTFE	1029446
Valve tool for gas valve insert	Steel	1029661
Separating diaphragm	PTFE/NBR	1025235
Gas valve assembly	1.4571/FKM/PTFE/MS	1029513
Gas valve insert	FKM/PTFE /MS	1029514
Gas valve insert	FKM/PTFE /NIRO	1029515
Manometer with connection adapter	-	1031556
Charging hose with connector for compressed air system, 25 bar; 2.5 m	-	1036156
Charging hose with connector for nitrogen bottle or pressure reducer	-	1036157

Motor Driven Metering Pumps

1.8 Hydraulic/Mechanical Accessories

Admissible operating temperature: -10 to +80 °C. Response pressure: 2 bar (nitrogen). Other accumulator/diaphragm materials available on request.

Stainless Steel Pulsation Damper


Volume	Max. pressure	Diaphragm material	Connector G	Α	ØD	Order no.
I	bar			mm	mm	
0.16	180	NBR	Rp 1/2	124	74	1008609
0.16	180	Butyl	Rp 1/2	124	74	1008610
0.16	180	FKM	Rp 1/2	124	74	1008611
0.32	160	NBR	Rp 1/2	137	93	1008612
0.32	160	Butyl	Rp 1/2	137	93	1008613
0.32	160	FKM	Rp 1/2	137	93	1008644
0.75	140	NBR	Rp 1/2	168	121	1008645
0.75	140	Butyl	Rp 1/2	168	121	1008646
0.75	140	FKM	Rp 1/2	168	121	1008647
2.00	100	NBR	Rp 3/4	224	167	1008648
2.00	100	Butyl	Rp 3/4	224	167	1008649
2.00	100	FKM	Rp 3/4	224	167	1008650
4.00	50	NBR	Rp 3/4	360	170	1008651
4.00	50	Butyl	Rp 3/4	360	170	1008652
4.00	50	FKM	Rp 3/4	360	170	1008653
0.75	140	NBR	Rp 1	168	121	1027617
0.75	140	Butyl	Rp 1	168	121	1027618
0.75	140	FKM	Rp 1	168	121	1027619
2.00	100	NBR	Rp 1 1/2	224	167	1027620
2.00	100	Butyl	Rp 1 1/2	224	167	1027621
2.00	100	FKM	Rp 1 1/2	224	167	1027622
4.00	50	NBR	Rp 1 1/2	360	170	1027623
4.00	50	Butyl	Rp 1 1/2	360	170	1027624
4.00	50	FKM	Rp 1 1/2	360	170	1027625

pk_2_102

Mounting Clamp for Stainless Steel Pulsation Damper

Volume	Number of Clamps	ØD	Order no.
I		mm	
0.16	1	74	1008664
0.32	1	93	1008665
0.75	1	121	1008666
2.00	1	167	1008667
4.00	2	170	1008668

Inflation and testing unit for pulsation damper

The inflation and testing unit is used to recharge accumulators with nitrogen and check or alter the existing pre-filling pressure.

It contains:

- Checking and filling system with pressure gauge, non-return valve on the inlet, integrated bleed valve, valve stem to open gas inlet valve on accumulator.
- Charging hose, Length 2 m

Adjustment range	Order no.
Up to 25 bar	1008769
Up to 100 bar	1008669
Up to 250 bar	1008670

Pulsation Damper (in-line)

The pulsation damper is used to produce minimal pulsation metering and to reduce flow resistance in long

The gas cushion between the housing and the line is compressed at a pressure stroke of the metering pump, a partial quantity of the medium being simultaneously metered into the metering line. The excess pressure generated in the gas cushion has the effect of allowing the compressed volume to continue to be transported with the following suction stroke and the original, relieved gas volume is restored.

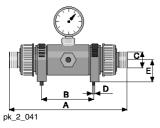
Important notice: The pulsation damper should be used in conjunction with a relief valve.

PP In-Line Damper

Damper diaphragm is replaceable, seals made of EPDM.

Medium temperature max. 50 °C

Pre-pressure is approx. 0.6 x operating pressure.


^{*} Chlorosulfonated polyethylene

For other sizes (0.2 I and 0.5 I) see in-line pulsation damper PVDF.

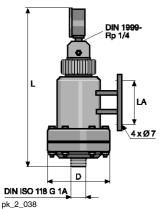
For other sizes (0.2 I and 0.5 I), see PVDF inline pulsation damper.

PVC In-Line Damper

Removable hose, FKM seals.

P_AC_0180_SW

Туре	Dimensions				
	Α	В	С	D	E
PDS 2.5	541	525	G2	11	99.5


	Volume	Max. pressure	Damper diaphragm	Connection	Order no.
	1	bar			
PCE in-line damper	0.05	10	CSM*	G 3/4 – DN 10	1026775
PCB in-line damper	0.05	10	FKM	G 3/4 – DN 10	1026778
PDS 2.5	2.50	8	Hypalon	G 2 – DN 32	1001342
PDS 2.5	2.50	8	FKM	G 2 – DN 32	1001343

^{*} Chlorosulfonated polyethylene

For other sizes (0.2 I and 0.5 I) see in-line pulsation damper PVDF.

1.8.7

Accumulators

Pulsation dampers with separating bubble for providing separation between the gas cushion and metered chemical are used for low-pulsation metering as well as for reducing the flow resistance in long metering lines and in connection with viscous media. The response pressure of the gas cushion should be approx. 60-80 % of the operating pressure.

Important: When using a pulsation damper, the pressure relief valve should be fitted with an adjustable back pressure valve.

PVC Accumulators

Accumulator removable, FKM seals.

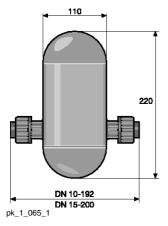
Volume	Diaphragm material	Connection	L	ØD	LA	Order no.
I			mm	mm	mm	
0.5	Butyl	G 1 - DN 15	361	145	100	791691
0.5	FKM	G 1 - DN 15	361	145	100	791695
1.0	Butyl	G 1 1/4 - DN 20	411	170	100	791692
1.0	FKM	G 1 1/4 - DN 20	411	170	100	791696
2.5*	Butyl	G 1 1/2 - DN 25	571	170	190	791693
2.5*	FKM	G 1 1/2 - DN 25	571	170	190	791697
5.0*	Butyl	G 2 1/4 - DN 40	936	170	230	791694
5.0*	FKM	G 2 1/4 - DN 40	936	170	230	791698

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

PP Accumulators

Accumulator removable, FKM seals.

Volume	Diaphragm material	Connection	L	ØD	LA	Order no.
1			mm	mm	mm	
0.5	Butyl	G 1 - DN 15	361	145	100	792128
0.5	FKM	G 1 - DN 15	361	145	100	792132
1.0	Butyl	G 1 1/4 - DN 20	411	170	100	792129
1.0	FKM	G 1 1/4 - DN 20	411	170	100	792133
2.5	Butyl	G 1 1/2 - DN 25	571	170	190	792130
2.5	FKM	G 1 1/2 - DN 25	571	170	190	792134
5.0	Butyl	G 2 1/4 - DN 40	936	170	400	792131
5.0	FKM	G 2 1/4 - DN 40	936	170	400	792135



1.8.8

Accumulators Without Diaphragm

Pulsation dampers with no diaphragm separating the gas cushion and the chemical are used to produce minimal pulsation metering and to reduce flow resistance in long pipes and when metering viscous liquids.

Important: When using accumulators or pulsation dampers it is imperative that a relief valve with an adjustable back pressure valve is fitted.

PP In-Line Pressure Accumulator

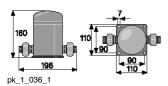
Operating range

20 °C - max. operating pressure 10 bar

40 °C - max. operating pressure 6 bar

	Volume	Permissible displacement	Connection	Order no.
	1			
Size II	1	up to 5 ml	G 3/4 – DN 10	243219
Size II	1	up to 5 ml	G 1 – DN 15	243220

PVC In-Line Accumulator

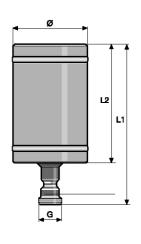

Operating range

20 °C - max. operating pressure 10 bar

40 °C - max. operating pressure 6 bar

	Volume	Permissible displacement	Connection	Order no.
	- 1			
Size II	1	up to 5 ml	G 3/4 – DN 10	243204
Size II	1	up to 5 ml	G 1 – DN 15	243205

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.


Stainless Steel In-Line Accumulator

Max. operating pressure 10 bar

	Volume	Connection		Order no.	
	I				
Size II	1	G 3/4 – DN 10	_	914756	
Size II	1	R 1 1/2 – DN 15	with insert	914551	

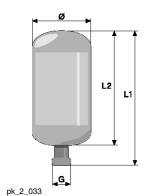
PP Pressure Accumulator

Volume	Connection		Ø	L1	L2	Order no.
I			mm	mm	mm	
2	G 1 1/4 – DN 20	without connector parts	140	290	220	243211
4	G 1 1/2 – DN 25	without connector parts	160	410	320	243212

PVC Pressure Accumulator

Operating range

20 °C - max. operating pressure 10 bar


40 °C - max. operating pressure 6 bar

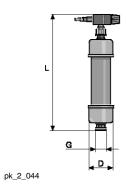
Volume	Connection		Ø	L1	L2	Order no.
I			mm	mm	mm	
2	G 1 1/4 – DN 20	without connector parts	140	290	220	243207
4	G 1 1/2 – DN 25	without connector parts	160	410	320	243208

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

pk_2_042

Stainless Steel Accumulator

Max. operating pressure 10 bar


Volume	Connection		Ø	L1	L2	Order no.
I			mm	mm	mm	
2	G 1 1/4 – DN 20	without connector parts	140	272	222	243214
4	G 1 1/2 – DN 25	without connector parts	160	365	312	243215

Wall Bracket for Accumulator

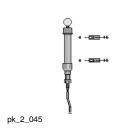
Consists of pipe clamp, mounting plate and connecting nipple.

	Ø	Order no.
	mm	
For accumulator volume 2 I	110	818502
For accumulator volume 2 I	140	803645
For accumulator volume 4 I	160	803646

pk_1_061

PVC Vacuum Cylinder

With vacuum pump connector and central housing part made of transparent PVC.

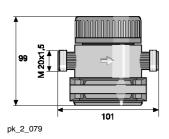

Seals: FKM or EPDM.

Max. operating pressure 2 bar at 40 °C operating temperature.

Volume	Connection	Seal material	L	D	Order no.	
I			mm	mm		
0.5	G 1 – DN 15	FKM	380*	78	243591	_
0.5	G 1 – DN 15	EPDM	380*	78	1025699	
1.0	G 1 1/4 – DN 20	FKM	440*	86	243592	
1.0	G 1 1/4 – DN 20	EPDM	440*	86	1025701	
2.5	G 1 1/2 – DN 25	FKM	520*	133	243593	
2.5	G 1 1/2 – DN 25	EPDM	520*	133	1025702	
5.0	G 2 1/4 – DN 40	FKM	630*	155	243594	
5.0	G 2 1/4 – DN 40	EPDM	630*	155	1025703	

^{*} Approximate values

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.


Vacuum Pump Assembly / Priming Aid

For pulsation dampers, suction side (vacuum cylinder accumulator).

Material	Seals	Order no.
PVC	EPDM	790019

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

Suction pressure regulator

The suction pressure regulator is a spring-loaded diaphragm valve (max. 50 l/h) which opens as a result of the pump suction pressure. This ensures that chemicals cannot flow when the pump is not running, nor can a vacuum be created as a result of tube rupture.

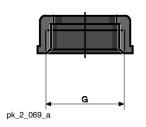
A ball check valve should be fitted to prevent undesirable suction action at the pump outlet (e.g. siphon effect).

An adjustable spring is used to set the maximum required negative pressure for each operating situation up to 400 mbar. For pumps with positive inlet pressure a minimal vacuum of approx. 50 mbar is sufficient. The pump should produce this vacuum in any case, even for an atmospheric pressure inlet.

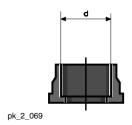
Technical Data

Max. flow rate	50 l/h
Max. feed pressure	4 bar
Max. intake pressure	0.3 bar
Max. temperature	40 °C
Housing material	PVC
Diaphragm material	FKM
Seals	FKM
Ball material	Glass
Spring material	Hastellov C

Type		Connection	Order no.
SDR 50	For solenoid-driven pumps	M 20 x 1,5	1005505
SDR 50	For motor-driven pumps up to 50 l/h	G 3/4 - DN 10	1005506


Connection parts to be ordered separately.

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.


1.8.9 **Connectors and Seals for Motor Driven Metering Pumps**

Union Nuts

	Material	Connection	Order no.
Union nut	PP	G 5/8 – DN 8	800665
	PP	G 3/4 – DN 10	358613
	PP	G 1 – DN 15	358614
	PP	G 1 1/4 – DN 20	358615
	PP	G 1 1/2 - DN 25	358616
	PP	G 2 - DN 32	358617
	PP	G 2 1/4 - DN 40	358618
	PP	G 2 3/4 - DN 50	358619
	PVC	G 5/8 – DN 8	800565
	PVC	G 3/4 – DN 10	356562
	PVC	G 1 – DN 15	356563
	PVC	G 1 1/4 – DN 20	356564
	PVC	G 1 1/2 - DN 25	356565
	PVC	G 2 - DN 32	740690
	PVC	G 2 1/4 - DN 40	356567
	PVC	G 2 3/4 - DN 50	356568
	PVDF	G 3/4 – DN 10	358813
	PVDF	G 1 - DN 15	358814
	PVDF	G 1 1/4 - DN 20	358815
	PVDF	G 1 1/2 - DN 25	358816
	PVDF	G 2 - DN 32	1003639
	PVDF	G 2 1/4 - DN 40	358818
	PVDF	G 2 3/4 - DN 50	358819
	1.4571	G 3/4 – DN 10	805270
	1.4571	G 1 - DN 15	805271
	1.4571	G 1 1/4 - DN 20	805272
	1.4571	G 1 1/2 - DN 25	805273
	1.4571	G 2 - DN 32	805274
	1.4571	G 2 1/4 - DN 40	805275
	1.4571	G 2 3/4 - DN 50	805276

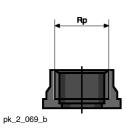
Insert

	Material	Connection	Order no.
Fusion socket	PP	d 12 – DN 8	800666
	PP	d 16 – DN 10	358603
	PP	d 20 – DN 15	358604
	PP	d 25 – DN 20	358605
	PP	d 32 – DN 25	358606
	PP	d 40 – DN 32	358607
	PP	d 50 – DN 40	358608
	PP	d 63 – DN 50	358609
	PVDF	d 16 – DN 10	358803
	PVDF	d 20 – DN 15	358804
	PVDF	d 25 – DN 20	358805
	PVDF	d 32 – DN 25	358806
	PVDF	d 40 – DN 32	1003640
	PVDF	d 50 – DN 40	358808
	PVDF	d 63 – DN 50	358809

	Material	Connection	Order no.
Fusion coupler, grooved*	PP	d 16 – DN 10	1001785
	PP	d 20 – DN 15	1001395
	PP	d 25 – DN 20	1036258
	PP	d 32 – DN 25	1001787
	PP	d 40 – DN 32	1005105
	PP	d 50 – DN 40	1025960
	PP	d 63 – DN 50	1019207
	PVDF	d 16 – DN 10	358803
	PVDF	d 20 – DN 15	358804
	PVDF	d 25 – DN 20	1036259
	PVDF	d 32 – DN 25	1001788
	PVDF	d 40 – DN 32	1003640
	PVDF	d 50 – DN 40	1025959
	PVDF	d 63 – DN 50	1019208

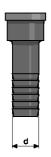
^{*} To be used together with ProMinent® PTFE formed composite seals.

	Material	Ø D1	Ø D2	Connection	Order no.
		mm	mm		
SS fusion coupler, grooved	1.4404	15.0	19.5	d 12 – DN 10	1006011
	1.4404	21.0	25.6	d 16 – DN 15	1006001
	1.4404	26.7	33.6	d 22 – DN 20	1031457
	1.4404	33.4	39.6	d 28 – DN 25	1031458
	1.4404	42.2	49.6	d 36 – DN 32	1031459
	1.4404	48.3	57.5	d 40 – DN 40	1023643
	1.4404	71.6	60.3	d 54 – DN 50	1031460


	Material	Connection	Order no.	
Adhesive socket	PVC	d 16 – DN 10	356572	
	PVC	d 20 – DN 15	356573	
	PVC	d 25 – DN 20	356574	
	PVC	d 32 – DN 25	356575	
	PVC	d 40 – DN 32	356576	
	PVC	d 50 – DN 40	356577	
	PVC	d 63 – DN 50	356578	

	Material	Connection	Order no.
Adhesive coupler, grooved*	PVC	d 16 – DN 10	1001784
	PVC	d 20 – DN 15	1001394
	PVC	d 25 – DN 20	1036257
	PVC	d 32 – DN 25	1001786
	PVC	d 40 – DN 32	1005104
	PVC	d 50 – DN 40	1025961
	PVC	d 63 – DN 50	1019206

^{*} To be used together with ProMinent® PTFE formed composite seals.


H4	ØD2	
	ØD1	
	Ød	, []
	<u> </u>	<u> </u>
	_	

P_AC_0210_SW

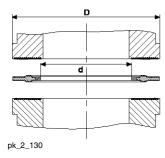
	Material	Connection	Order no.
Threaded pipe socket	1.4404	Rp 3/8 – DN 10	805285
	1.4404	Rp 1/2 – DN 15	805286
	1.4404	Rp 3/4 – DN 20	805287
	1.4404	Rp 1 – DN 25	805288
	1.4404	Rp 1 1/4 – DN 32	805289
	1.4404	Rp 1 1/2 – DN 40	805290
	1.4404	Rp 2 – DN 50	805291

Pressure Hose Nozzles

pk_2_046

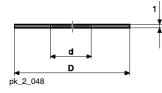
	Material	Connection	Order no.
Pressure hose nozzle	PP	d 16 – DN 10	800657
	PP	d 20 – DN 15	800655
	PP	d 25 – DN 20	800656
	PP	d 32 – DN 25	811418
	PVC	d 16 – DN 10	800554
	PVC	d 20 – DN 15	811407
	PVC	d 25 – DN 20	811408
	PVC	d 32 – DN 25	811409
	PTFE	d 16 – DN 10	811572
	PTFE	d 20 – DN 15	811424
	PTFE	d 25 – DN 20	811425
	PTFE	d 32 – DN 25	811426
	PVDF	d 40 – DN 32	1005106
	1.4571	d 16 – DN 10	810536
	1.4571	d 20 – DN 15	810567
	1.4571	d 25 – DN 20	810568
	1.4571	d 32 – DN 25	810569
	1.4571	d 40 – DN 32	1005360

	Materiai	Connection	Order no.
Hose nozzle, grooved	PVDF	d 16 – DN 10	1002288
	PVDF	d 20 – DN 15	740632
	PVDF	d 25 – DN 20	1006014
	PVDF	d 32 – DN 25	1005560
	PVDF	d 40 – DN 32	1005106


To be used together with ProMinent ${}^{\tiny\textcircled{\tiny{\textbf{0}}}}$ PTFE formed composite seals.

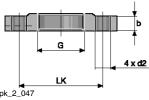
Stainless Steel Threaded Clip

For connecting intake and metering line to pressure hose nozzle.


	Clamping range	Order no.
	mm	
DN 10 clamping ring	16 – 25	359703
DN 15 clamping ring	20 – 32	359705
DN 20 clamping ring	25 – 40	359706
DN 25 clamping ring	32 – 50	359707
DN 32 clamping ring	40 – 60	1002777

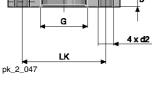
PTFE Formed Composite Seals

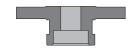
Formed composite seals to be used on grooved sealing surfaces (e.g. pump valve and grooved inserts from ProMinent).


DN	Material	D	d	Order no.
		mm	mm	
DN 10	PTFE	23.8	14.0	1019364
DN 15	PTFE	29.5	18.0	1019365
DN 20	PTFE	38.0	22.6	1019366
DN 25	PTFE	44.0	27.6	1019367
DN 32	PTFE	56.0	34.6	1019353
DN 40	PTFE	62.0	40.6	1019368

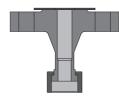
Set of elastomer flat packing seals

Comprising two EPDM and two FKM seals. An elastomer flat seal should be used with non-grooved sealing surfaces. Leaks may occur at the connection if a PTFE shaped composite seal is used.


	D	d	Order no.
	mm	mm	
DN 10	23.5	14.0	1024159
DN 15	29.5	18.0	1024160
DN 20	38.0	22.6	1036254
DN 25	44.0	28.0	1024161
DN 32	56.0	36.0	1024162
DN 40	62.0	41.0	1029508



Flange Mountings


Flange connection in line with DIN 2566 for ProMinent® valve sizes.

Material		G/DN	Pressure rating	b	Ø LK	d2	Order no.
			PN	mm	mm	mm	
PVDF -	•	G 3/4 - DN 10	PN 16	12.4	60	14	1036274
PVDF -		G 1 - DN 15	PN 16	13.0	65	14	1036275
PVDF -	-	G 1 1/4 - DN 20	PN 16	15.0	75	14	1036276
PVDF -	-	G 1 1/2 - DN 25	PN 16	16.0	85	14	1036277
PVDF -	-	G 2 - DN 32	PN 16	18.0	100	18	1036278
PVDF -	-	G 2 1/4 - DN 40	PN 16	20.0	100	18	1039037
1.4404 -	-	G 3/4 - DN 15	PN 40	12.0	65	14	803946
1.4404 -		G 1 - DN 15	PN 40	12.0	65	14	803940
1.4404 -	-	G 1 1/4 - DN 20	PN 40	15.0	75	14	803941
1.4404 -		G 1 1/2 - DN 25	PN 40	15.0	85	14	803942
1.4404 -	-	G 2 - DN 32	PN 40	18.0	100	18	1036283
1.4404 -		G 2 1/4 - DN 40	PN 40	20.0	110	18	803943
1.4404 -	-	G 2 3/4 - DN 50	PN 40	25.0	125	18	1020453
1.4404 -		G 2 1/2 - DN 65	PN 40	20.0	145	18	1010700
PVDF v	vith collar*	G 3/4 - DN 10	PN 16	12.5	60	14	1036279
PVDF v	vith collar*	G 1 - DN 15	PN 16	13.5	65	14	1036280
PVDF v	vith collar*	G 1 1/2 - DN 25	PN 16	16.0	85	14	1036281
PVDF v	vith collar*	G 2 - DN 32	PN 16	18.0	100	18	1036282
1.4571 v	vith collar*	G 3/4 - DN 10 (DIN 2637)	PN 100	20.0	70	14	1006005
1.4571 v	vith collar*	G 1 - DN 15 (DIN 2637)	PN 40	16.0	65	14	1006006
1.4404 v	vith collar*	G 1 1/2 - DN 25 (DIN 1092-1)	PN 40	18.0	85	14	1041796
1.4404 v	vith collar*	G 2 - DN 32 (DIN 1092-1)	PN 40	18.0	100	18	1041797

P_AC_0263_1_SW1 PVDF with collar

P_AC_0264_SW1 1.4571/1.4404 with collar

Further material versions and details available on request.

Use flange mountings with a collar for pumps Sigma/ 1, Sigma/ 2 with DN 15 connector and Sigma/ 3pumps with DN 25 connector. Sigma/ 3-DN25 1" EN 1092-11.4404 part no: 1041796

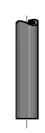

d D pk_2_048

Flat Seals for Threaded Flange to DIN 2566

Material	G/DN	D	d	Order no.
		mm	mm	
PTFE	G 3/4 - DN 15	52	12	483938
PTFE	G 1 - DN 15	52	17	483924
PTFE	G 1 1/4 - DN 20	62	22	483925
PTFE	G 1 1/2 - DN 25	72	27	483926
PTFE	G 2 - DN 32	83	33	1007541
PTFE	G 2 1/4 - DN 40	92	40	483928
PTFE	G 2 3/4 - DN 50	108	50	483929
PTFE	G 3 - DN 65	130	60	1020466
FKM	G 3/4 - DN 15	52	12	483939
FKM	G 1 - DN 15	52	17	483942
FKM	G 1 1/4 - DN 20	62	22	483943
FKM	G 1 1/2 - DN 25	72	27	483944
FKM	G 1 1/2 - DN 32	83	33	1007542
FKM	G 2 1/4 - DN 40	92	40	483946
FKM	G 2 3/4 - DN 50	108	50	483947
FKM	G 3 - DN 65	130	60	1020467

Flange mountings as DIN 2629. To order for Meta HK and Makro TZ HK plunger metering pumps.

FKM = Fluorine Rubber


pk_1_028

pk_1_013

Straight Male Adapter Stainless Steel

Swagelock system, stainless steel SS 316 (1.4401) for connection of pipework to liquid end and valves with internal thread and for SB version.

	Orger no.
6 mm - ISO 7 R 1/4	359526
8 mm - ISO 7 R 1/4	359527
12 mm - ISO 7 R 1/4	359528
12 mm - ISO 7 R 3/8	359520
16 mm - ISO 7 R 3/8	359521

Soft PVC Suction Line

For metering pumps and accessories. We recommend that only original tubing is used so that the mechanical connection of the compression fitting and the pressure rating and chemical resistance are ensured.

Supply with food-use certification is available upon request.

Material	oØ x iØ		Permissible pressure	Order no.
	mm		bar	
PVC flexible	19 x 15	for DN 10	0.5*	037020
Flexible PVC	22 x 18	for DN 15	0.5*	037022

Admissible operating pressure at 20 °C in accordance with DIN EN ISO 7751, subject to chemical resistance and correct assembly.

Caution

The resistance of soft PVC hoses is not identical to that of hard PVC. Please observe the resistance for soft PVC as well as the cleaning instructions when using the equipment for food applications (see homepage).

* Permissible operating pressure at 20 °C, chemical resistance and proper connection assumed.

pk_1_060

Soft PVC Suction and Discharge Line with Woven Fabric Core

Supply with food-use certification is available upon request.

Material	oØ x iØ		Permissible pressure	Order no.
	mm		bar	
Soft PVC with woven inner layer	24 x 16	for DN 10	15*	037040
Soft PVC with woven inner layer	27 x 19	for DN 15	15*	037041
Soft PVC with woven inner layer	34 x 25	for DN 20	12*	037043
Soft PVC with woven inner layer	40 x 30	for DN 25	10*	1000527
Soft PVC with woven inner layer	52 x 40	for DN 32	7*	1005508

Admissible operating pressure at 20 °C in accordance with DIN EN ISO 7751, subject to chemical resistance and correct assembly.

Caution

The resistance of soft PVC hoses is not identical to that of hard PVC. Please observe the resistance for soft PVC as well as the cleaning instructions when using the equipment for food applications (see homepage).

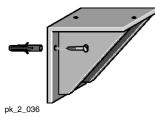
For socket welded and PVC cemented rigid PP and PVDF pipe, pipes and fittings with a pressure rating of PN 16 or PN 10 bar are to be used.

Stainless Steel Pipes

Material	Length	oØ x iØ	Permissible pressure	Order no.
	m	mm	bar	
Stainless steel pipe 1.4435	Sold in metres	6 x 5	175*	015738
	Sold in metres	6 x 4	185*	015739
	Sold in metres	8 x 7	160*	015740
	Sold in metres	12 x 10	200*	015743

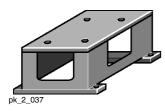
Admissible operating pressure at 20 °C in accordance with DIN EN ISO 7751, subject to chemical resistance and correct assembly

Hose Cutting Kit


Hose Cutting Set for Plastic Pipes up to a Diameter of 25 mm. Manufacturer: Gedore.

	Order no.
Hose Cutting Kit	1038571

1.8.10


Metering Pump Wall Mounting Bracket

PP Wall Bracket

PP wall mounting, holds pump parallel to the wall, includes fixings. Measurements: L x W x H, 230 x 220 x 220 mm

		Order no.	
Wall mounting bracket	for Vario, Sigma and Meta	1001906	

PP Foot Bracket

For mounting metering pump, includes fixings. Material PP.

Measurements: L x W x H 250 x 160 x 150 mm

	Order no.
Foot bracket	809910

Motor Drive

1.9 Electrical Accessories

1.9.1

Speed Controllers

Frequency Converters for Speed Control

Frequency converters are installed in the IP 55 protective enclosure and are suitable for the motor output ratings listed below.

Integrated control unit with various functions optimally matched to ProMinent metering pumps: Selectable external/internal control, internal/external reset, temperature monitoring and control via PTC sensor, separate motor fan control as well as evaluation of diaphragm rupture monitoring.

Internal control: via potentiometer

External control: 0/4-20 mA corresponding to 0-50 (60) Hz output frequency

Frequency converters can be used in the range of -10 °C to 40 °C.

P_AC_0185_SW Max. motor output kW	For pump type	Voltage supply	Voltage supply, external fan	Control range	Order no.
0.37	Sigma/ 1, Sigma/ 2, Meta, Hydro/ 2, MF1a, DR15	1 ph 200 – 240 V	230 V 50/60 Hz	1:10	1030684
0.75	Sigma/ 3, Hydro/ 3, MF2a	1 ph 200 – 240 V	230 V 50/60 Hz	1:10	1030685
1.50	Makro TZ, MF2a, MF3a, DR150	1 ph 200 – 240 V	230 V 50/60 Hz	1:10	1030686
2.20	Makro TZ, MF3a, DR150	1 ph 200 – 240 V	230 V 50/60 Hz	1:10	1030687
4.00	ME3a ME4a	3 ph 380 - 500 \/	3 nh 380 V	1.5	1030688

Dimensions and weight

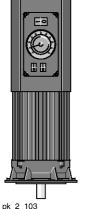
Order no.	В	н	С	Weight
	mm	mm	mm	kg
1030684	210	240	163	6.3
1030685	210	240	163	6.3
1030686	215	297	192	8.8
1030687	230	340	222	10.7
1030688	230	340	222	10.7

Variable speed motors with integrated frequency converter with IP 55 protection

Externally controllable with 0/4-20 mA (factory setting 4-20 mA)

Voltage supply: 1 ph 230 V, 50/60 Hz (0.37-1.1 kW) Voltage supply: 3 ph 400 V, 50/60 Hz (1.5-3 kW)

The following functions are integrated in the terminal box cover:


- Start/stop switch
- Switch for manual/external operation
- Potentiometer for speed control in manual mode.

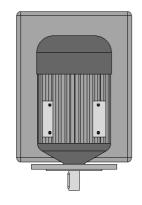
Max. motor output	For pump	Control range	Flange Ø	Order no.
kW			mm	
0.18	Sigma/ 1	1:20	120	1020229
0.37	Sigma/ 2	1:20	105	1008568
0.37	Hydro/ 2, Meta	1:20	160	1008569
0.55	Sigma/ 3	1:20	160	1008570
0.75	Hydro/ 3	1:20	160	1008571
1.10	Makro TZ (TZMB)	1:20	160	1008572
1.50	Makro TZ	1:20	160	1008573
2.20	Makro TZ	1:20	200	1008574
3.00	Makro/ 5	1:20	250	1027482

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IE3 standard in compliance with the Ecodesign Directive 2009/125/EC.

pk_2_103
Variable speed motor with integrated frequency converter


1.9 Electrical Accessories

Operating unit for setting control parameters

	Order no.
With sub-D connector (old)	1020585
With Western connector (new)	1029493

Note:

Version suitable for use in ambient temperatures up to 55°C available on request.

P_AC_0211_SW

Explosion-protected compact drive with integrated frequency converter Protection class II 2G Eexde II C T4

400 V, 50/60 Hz Voltage supply: 3 ph + neutral + earth Mains feed:

Model: IM_{B5}

Inputs: 2 x analogue 0/4...20 mA

4 x digital (includes frequency input 0...100 kHz)

Outputs: 2 x analogue 4...20 mA

4 x digital 0/+20 V, 10 mA

1 x frequency output 0...10 kHz, 0/18...24 V, max. 5 mA

Terminal strip connectors: ON/OFF

> Self-locking RESET

Winding and temperature monitoring by PTC resistor with integral evaluation.

External control circuit: 230 V with internal fuse.

Note:

Delivery on request

Max. motor output	For pump	Control range	Flange Ø
kW			mm
0.55	Hydro/ 2, Sigma/ 3, Orlita MF	1:10	80
0.75	Hydro/ 3, Orlita MF	1:10	80
1.50	Makro TZ, Orlita MF	1:10	200
2.20	Makro TZ, Orlita MF	1:10	200
4.00	Makro/ 5, Orlita MF	1:10	250

Pumps with compact drive are always delivered on a frame.

Motor data sheets can be requested for more information.

Special motors or special motor flanges and other control ranges are available on request.

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IE3 standard in compliance with the Ecodesign Directive 2009/125/EC.

1.9 **Electrical Accessories**

1.9.2

General Electrical Accessories

Universal signal cable

For control of the metering pump via potential-free contact, analogue standard signal and for potential-free ON/ OFF switching - switch-on function.

For Vario, S1Ca, S2Ca and S3Ca with 5-pin round plug made of plastic and 5-wire cable with open end.

	Cable length	Order no.
	m	
Universal cable	2	1001300
Universal cable	5	1001301
Universal cable	10	1001302

Reed cable with 3-pin round plug, PE

For Sigma metering pumps with 3-pin round plugs and a 3-core cable with an open end for level control. Suitable for Suction lance for motor-driven metering pumps* \rightarrow 1-66

	Cable length	Order no.
	m	
Reed cable with 3-pin round plug, PE	2	1030334
	3	1030335
	5	1030336

P_AC_0243_SW

Level sensor cable for connection of a universal suction lance and a motordriven metering pump

For connection of the level switch of the universal suction lance for Sigma metering pumps or the higherlevel control system (e.g. PLS).

Suitable for PPE universal suction lance for motor-driven metering pumps → 1-65

P_AC_0243_SW

	Cable length	Fig.	Order no.
	m		
Round plug coupling for M12 3-pin round plug	2	pk_1_126	1040962
Round plug coupling for M12 3-pin round plug	5	pk_1_126	1040963
Round plug coupling for M12 open end	1.1	P_AC_0243_SW	1009873
Round plug coupling for M12 open end	5	P_AC_0243_SW	1022537

Extension cable, 3-core

For 2-stage level switches, with round plug and round plug coupling.

	Cable length	Fig.	Order no.
	m		
Extension cable, 3-core	3	pk_1_126	1005559

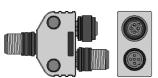
1.9 Electrical Accessories

Profibus adaptor, IP 65 protection

Y-adapter 2 x M12 x 1 male/female

PROFIBUS® termination assembly,

PROFIBUS® termination resistor,


comprising a Y-plug and terminating resistance

PROFIBUS® Y-adapter

From eurofast 5-pin M12 x 1, length approx. 500 mm.

P AC 0245 SW

USB adaptor

plug-in

To connect a laptop to gamma and Sigma series metering pumps.

The USB adapter can be used to transfer timer programmes created using ProTime software to the pump. You will find the ProTime software on our home page.

Fig.

P_AC_0245_SW

P_AC_0230_SW

P_AC_0239_SW

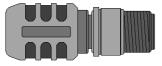
M12 x 1 male

M12

M 12 x 1

M 12 x 1

Order no.


1040956

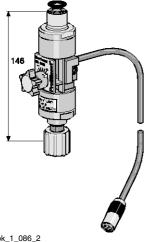
1040955

1036621

1036622

Order no

ь	۸0	იიიი	CW
Р_	_AU_	_0239_	_5**


P_AC_0230_SW_1

	Order no.
USB Adapter	1021544

Flow Control adjustable flow monitor

Suitable for product range Sigma/1/2/3 in material versions PVT and SST. Complete with connector cable for assembly directly on the dosing head.

For monitoring the individual strokes based on the floating body principle. The adjustment screw is used to match the partial flow flowing past the float to the set stroke volume so that an alarm is emitted if the level falls significantly below the required level. The permitted number of incompletely performed strokes can be selected between 1-150 on the Sigma Control (S1Cb/S2Cb/S3Cb), ensuring optimum adaptation to process requirements.

pk_1_086_2

Materials

Flow meter: **PVDF** Float: PTFE-coated Seals: FKM/EPDM

Flow Control	Seal material	For pump	Order no.
Flow Control DN 10	EPDM	Sigma/ 1	1021168
Flow Control DN 10	FKM	Sigma/ 1	1021169
Flow Control DN 15	EPDM	Sigma/ 1/2	1021170
Flow Control DN 15	FKM	Sigma/ 1/ 2	1021171
Flow Control DN 25	EPDM	Sigma/ 2/ 3	1021164
Flow Control DN 25	FKM	Sigma/ 2/ 3	1021165
Flow Control DN 32	EPDM	Sigma/ 3	1021166
Flow Control DN 32	FKM	Sigma/ 3	1021167

1.9 **Electrical Accessories**

Flow Meter DulcoFlow® for Sigma/ 1 Product Range

Your reliable control unit: unobtrusively measures, monitors and detects faults.

For the measurement of pulsating volumetric flows within the range of 0.03 ml/stroke to 10 ml/

The flow meter DulcoFlow® reliably measures pulsating flows in the range above 0.03 ml/stroke based on the ultrasound measuring principle. The flow meter achieves maximum chemical resistance, as all wetted parts are made of PVDF and PTFE.

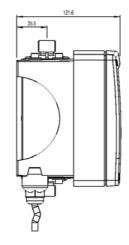
0 A A B

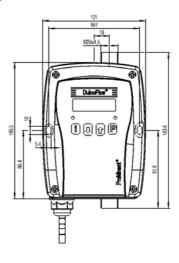
P_DFI_0002_SW1

The device works on the ultrasound measuring principle. It was developed specifically for measuring small pulsating volumetric flows. It is installed around 30 cm downstream of the metering pump, so that there is still sufficient pulsation in the flow. All liquids that conduct ultrasound waves can be measured.

Your benefits

- Maximum chemical resistance by the use of PVDF and PTFE
- No electrical conductivity of the medium is needed
- Measurement above stroke volumes of approx. 30 µl
- Detection of gas bubbles in the feed chemical
- No bottlenecks in the measuring tube. Media with small undissolved particles or with increased viscosity can be measured
- A 0/4 -20 mA current output and a frequency output are available for remote transmission of the measured values.
- Use as a single stroke monitor with feedback to the pump. This ensures that the metering stroke is performed within an adjustable lower and upper limit
- Summation of the metering volume measured with stroke counter
- Intuitive user guidance and simple programming


Technical Details


- 2 LEDs for status display and stroke feedback
- 2-line graphic display
- 0/4 20 mA standard signal and 0 10 kHz frequency output for remote transmission of the measured
- Compact, chemically-resistant plastic housing
- Measuring accuracy ±2% if the device has been calibrated to the chemical to be measured. Max. operating pressure 16 bar.

Field of application

- Measurement of the chemical consumption, for example in surface treatment
- Guaranteed metering, for example in the paper industry
- Measured value transmission and pump control by the central control system
- Measurement of aggressive chemicals
- Not suitable for liquids, which have minimal acoustic conductivity, e.g. sodium hydroxide (NaOH) with a concentration of greater than around 20%
- We recommend first testing the measurability with emulsions and suspensions

Dimensional drawing of DulcoFlow®

P_DFI_0003_SW_Dulcoflow_SW3

Dimensional drawing of DulcoFlow® - dimensions in mm

Electrical Accessories

Technical Data

Type Type 08 PVDF Measuring tube Max. operating pressure 16 bar

Smallest measurable stroke Approx. 0.05 ml/stroke pulsing volume

Contact output with individual Open collector, 1 contact per stroke

stroke detection Frequency output

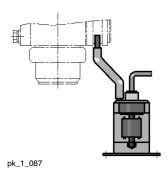
Open collector, up to 10 kHz at maximum flow (parametrisable)

Analogue output Parametrisable, max. load 400 Ω

for series Beta® 1604 - 0420, gamma/ X 1604 - 0424, delta® 1020 - 0450,

Sigma/ 1

Identity code ordering system for DulcoFlow® ultrasound flow meter


DFMa	Type (e (for pump series)										
	08	Beta® -	1604 – C)420, ga	mma/ X	1604 –	0424, de	elta® 1020 - 0450, Sigma/ 1				
			t mater	rial								
		E	EPDM									
		V	FKM									
		Т	PTFE									
			Hydrai	ulic con	nectio	1						
			1	6/4 mm	ı							
			2	8/5 mm	า							
			3	12/9 m	m							
				Electri	cal con	nection	n, cable					
				Α			C, 2 m Eı					
				В	100 - 2	30 V AC	C, 2 m Sv	wiss				
			C 100 - 230 V AC, 2 m Australian					ustralian				
	D 100 – 230 V AC, 2 m USA						SA					
					Signal	output						
					0	No out						
					1	Curren	t output					
					2	Contac	ct output					
					3	Curren	t output	and contact output				
				4 Current output for delta® with control module								
					Version							
						0 With ProMinent® logo						
						Accessories						
						0 Without accessories						

Matching adapter, hydraulically mechanical accessories

- Foot Valves see page → 1-46
- Injection Valves see page → 1-49
- Connector Parts, Seals, Hoses see page → 1-75
- Suction Lances/Suction Assemblies see page → 1-64
- Dosierüberwachung Mengenmessung see page → 1-92

1.9 Electrical Accessories

Diaphragm rupture indicator

Triggers alarm and switches off metering pump in the event of diaphragm rupture. Consists of float switch, PVC/PE, acrylic tank, connectors and connecting hose. Potential-free NO contact, max. contact voltage 60 V AC, 300 mA, 18 W.

	For pump	Order no.
Diaphragm rupture indicator	Meta, Makro TZ	803640
Diaphragm rupture indicator	Makro/ 5	1019528

Siren

HUW 55, 230 V, 50 - 60 Hz,

165 x 60 x 65, 85 phon, indoor.

(e.g. in association with fault indicating relay or relay controller)

	Order no.
HUW 55 Horn	705002

pk_1_088

Warning light

Wall mounted, red, 230 V, 50 - 60 Hz.

(e.g. in association with fault indicating relay, pulse generator or relay controller)

	Order no.
Indicator lamp, red	914780

1.10 Special Accessories

1 10 1

Custom Accessories

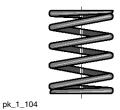
FKM metering diaphragm

As standard diaphragm but made of FKM, and without PTFE coating. Designed specifically for crystallising chemicals, e.g. silicate. Max. operating pressure 6 bar.

For pump type	Order no.
Vario 12017, 12026, 12042	811308
Vario 10025, 09039, 07063	811309
Vario 06047, 05075, 04120	811310
Sigma/ 1 (old diaphragm) 12017, 12035, 10050	1010281
Sigma/ 1 (old diaphragm) 10022, 10044, 07065	1010284
Sigma/ 1 (old diaphragm) 07042, 04084, 04120	1010287
Sigma/ 2 (old diaphragm) 16050, 16090, 16130	1018953
Sigma/ 2 (old diaphragm) 07120, 07220, 04350	1018984
Sigma/ 3 (old diaphragm) 120145, 120190, 120270, 120330	1006564
Sigma/ 3 (old diaphragm) 070410, 070580, 040830, 041030	1006566

Additional custom diaphragms for other pump types are available on request.

FKM = Fluorine Rubber



pk_1_103

Liquid end valve springs

With approx. 0.05-0.1 bar priming pressure for spring loading of the valve balls in the liquid end. Recommended to improve the valve function and to increase metering accuracy, in particular for viscous media above 50 m Pas.

	Order no.
1.4571 valve spring 0.05 bar for 1/4" connector on Meta/Makro TZ HK	469461
1.4571 valve spring 0.05 bar for 3/8" connector on Makro TZ HK	469462
Hastelloy C valve spring 0.1 bar DN 10	469114
Hastelloy C valve spring 0.1 bar DN 15	469107
Hastelloy C valve spring 0.1 bar DN 20	469451
Hastelloy C valve spring 0.1 bar DN 25	469452

Injection valve springs

With approximately 0.5-1 bar priming pressure for increased metering reproducibility and prevention of suction and siphoning effect.

	Order no.
Hastelloy C valve spring 0.5 bar DN 10	469115
Hastelloy C valve spring 1 bar DN 10	469119
Hastelloy C valve spring 0.5 bar DN 15	469108
Hastelloy C valve spring 1 bar DN 15	469116
Hastelloy C valve spring 0.5 bar DN 20	469409
Hastelloy C valve spring 1 bar DN 20	469135
Hastelloy C valve spring 0.5 bar DN 25	469414
Hastelloy C valve spring 1 bar DN 25	469136
Hastelloy C valve spring 0.5 bar DN 40	469104
Hastelloy C valve spring 1 bar DN 40	469137

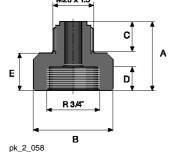
Injection valve spring with FEP coating

	Order no.	
Hastelloy C/FEP valve spring 0.5 bar for DN 10	818515	
Hastelloy C/FEP valve spring 0.5 bar for DN 15	818516	
Hastelloy C/PVDF valve spring 0.5 bar for DN 20	818517	
Hastelloy C/PVDF valve spring 0.5 bar for DN 25	818518	
Hastelloy C/PVDF valve spring 0.5 bar for DN 40	818519	

1.10 Special Accessories

pk_1_102

Custom valve balls


Ball valves and accessories for on site retrofitting of metering pumps when the standard material is unsuitable. Supplied loose only.

	Order no.
PTFE diameter 11.0 for DN 10 valve	404260
PTFE diameter 16.0 for DN 15 valve*	404259
PTFE diameter 20.0 for DN 20 valve	404256
PTFE diameter 25.0 for DN 25 valve	404257
PTFE diameter 38.1 for DN 40 valve	404261
Ceramic diameter 11.1 for DN 10 valve	404277
Ceramic diameter 16.0 for DN 15 valve*	404275
Ceramic diameter 20.0 for DN 20 valve	404273
Ceramic diameter 25.0 for DN 25 valve	404274
Ceramic diameter 38.1 for DN 40 valve	404278

^{*} Not suitable for PVT valve material.

Adapter from DN10-3/4" to M20x1.5

Fits 12 x 9 hose connector set

	Material	Order no.
Adapter from DN 10, 3/4" fem. to M20 x 1.5 male	PVDF	1017406

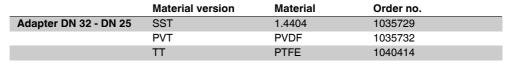
DN15 adapter, 1" (Sigma) to M20 x 1.5

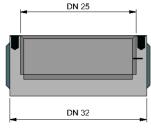
Fits 12 x 9 tube connector kit.

	Material	Order no.
Adapter from DN 15, 1" fem. to M20 x 1.5 male	PVDF	1028530

Dimensions

	Α	ВØ	С	D	Е
	mm	mm	mm	mm	mm
Adapter from DN 10, 3/4" fem. to M20 x 1.5 male	35	36	15	12	19
Adapter from DN 15, 1" fem. to M20 x 1.5 male	36	41	15	13	20

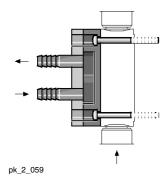

Adapter (complete) from M20 x 1.5 to G3/4 DN10


Consisting of an adapter and a PTFE, EPDM/P, FPM-A flat seal and PTFE shaped composite seal. Suitable for connection of the flow meter DulcoFlow® to a Sigma/ 1.

	Material	Order no.
Adapter (complete) from M20 x 1.5 to G3/4 DN10	PVT	1028409

Valve adapter DN 32 - DN 25

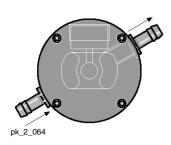
Suitable for the liquid end of the Sigma/ 3 metering pump FM 1000 up to 600 l/h.



P_AC_0244_SW

otor Driven Metering Pumps

1.10 Special Accessories


Cooling/heating equipment, diaphragm metering pumps

For stainless steel liquid end. For assembly, including retrofitting, onto the liquid end. 10 mm diameter connectors for hot/cold chemicals with locking screws. Dimensions in mm. Outer diameter A, pitch circle diameter LK.

Temperature -10 ... 80 °C

For pump	ØA	Ø LK	Order no.
	mm	mm	
Sigma/ 1 FM 50/65*	-	-	1025500
Sigma/ 1 FM 120*	_	_	1025501
Sigma/ 2 FM 130*	-	-	1002178
Sigma/ 2 FM 350*	_	-	1002179
Sigma/ 3 FM 330*	-	-	1006455
Sigma/ 3 FM 1000*	_	_	1006456
Hydro/ 2/3 FMH 025/060	-	-	1024743
Hydro/ 3 FMH 150	_	_	1040112
Hydro/ 4 FMH 400	-	-	1047700
Meta, Makro TZ FM 130, FM 260	145	127	803751
Meta, Makro TZ FM 530	180	164	803752
Makro TZ FM 1500/2100	248	219	806005
Makro/ 5 FM 4000	-	-	1020683
Makro TZ FMH 70/20	_	-	1041263
Makro/ 5 FMH 85/50	-	-	1041261
Makro/ 5 FMH 60/50	_	_	1041260
Makro/ 5 FMH 130/50	-	-	1041262

^{*} Adapted to the design with the new multi-layer safety diaphragm.

Cooling/heating equipment, plunger metering pumps

The cooling/heating equipment is installed in the liquid end. 10 mm diameter connectors. Cannot be retrofitted.

For pump	Order no.
Sigma HK - 08 S	1040459
Meta/Sigma HK - 12,5 S	803551
Meta/Sigma HK - 25 S	803552
Meta/Sigma HK - 50 S	803553
Makro TZ FK 30	1036645
Makro TZ FK 50	1036655
Makro TZ FK 85	1024665

Cooling/heating equipment for Makro TZ HK on request.

1.10 Special Accessories

pk_1_119 1 grey 2 black

2 black3 brown

4 blue

5 white

Mains voltage
Relay flow control

Relay flow control

Connecting for sensor

Thermal metering monitor

The flow monitor consists of a sensor and monitor electronics. It operates on the principle of heat transference from the water flow and can be used with all solenoid and motor-driven metering pumps at or above a continuous metering quantity of $0.5 \, l/h$.

Monitor electronics

The fault indicating relay is triggered when normally flowing liquid ceases to flow (switching power 250 V/ 4 A). At this point the relay opens for 3-20 sec (adjustable). The switch status is indicated by LED. Continuous flow volume adjustment.

Enclosure rating Enclosure IP 40

Terminal box IP 00

Permissible ambient temperature 0...60 °C

	Electrical connection	Order no.
Evaluation electronics	230 V, 50/60 Hz	792886

Probe C

Single-section ceramic sensor

Outer thread G 1/2

 $\textbf{Operating temperature} \qquad \qquad 5 \text{ °C to 60 °C medium temperature, not suitable for alkaline solutions}$

Lead length Fixed input lead. Cable length 2 m.

Max. lead length100 mEnclosure ratingIP 67Pressure resistance7 barAdjustment range0 - 60 cm/s

 Order no.

 Probe C
 1022339

Probe S

Single-cell, metal-clad sensor, stainless steel material no. 1.4571

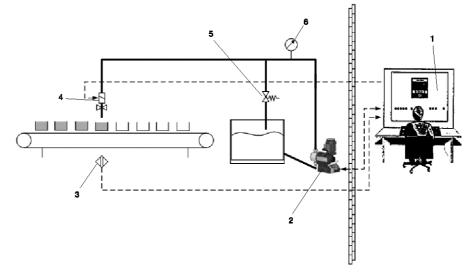
Outer thread G 1/2

Operating temperature -25 °C to 80 °C medium temperature
Lead length Fixed input lead. Cable length 2 m.

Max. lead length100 mEnclosure ratingIP 67Pressure resistance30 bar

Adjustment range 1 cm/s to 5 m/s

Order no.


Probe S 792888

Required connector parts (T-piece, bypass) should be ordered separately.

Metering of Highly Viscous Substances

Motor-driven pumps Product:

Metered medium: Viscous filler Sector: **Electronics** Application: Part filling

- Process control system (master)
- Metering pump, Sigma (field unit)
- Proximity switch Solenoid valve
- Overflow valve
- Pressure gauge

pk_2_113

Tasks and requirements

- Metering of a viscous filler in templates
- Metering accuracy ±2%
- Varying filling volumes

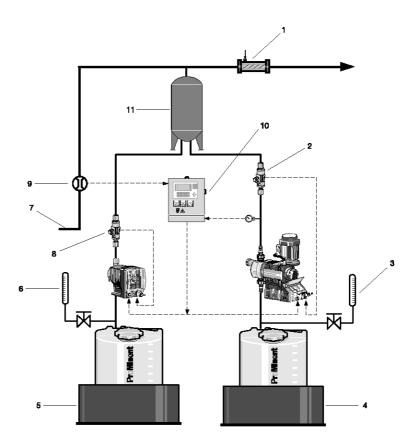
Operating conditions

- The templates pass the metering point on a conveyor in "stop and go" operation.
- The pump is started by a proximity switch at the conveyor (external contact control).

Notes on application

- The start always begins with a pressure stroke, i.e. controlled stop of the diaphragm at the end of the
- When varying the filling volume, a stroke length as large as possible should be chosen this improves
- Short and stable suction and metering lines, no pulsation damper thus reduction of the flexible (moved)
- If possible work with feed so that the suction lines are always filled with liquid even during longer idle
- A solenoid valve is required for filling to prevent dripping of the residual quantities.

- Sigma Control metering pump with PROFIBUS® connection
- Overflow valve, solenoid valve


- Monitoring of the metering pump and setting of the metering amount (number of strokes) by PCS in the control centre
- Less electrical installation work required
- Integration into the complete process flow through PROFIBUS®
- Safe and precise metering thanks to overflow and solenoid valves

1.11.2 **Mixing Two Reagents**

Product: Motor-driven pumps, solenoid pumps Metered medium: Chlorine activator, oxidant (NaOCI) Sector: Process industry, power stations

Application: Biocide handling in cooling water systems

- Static mixer
- Flow Control Feed measuring unit
- NaOCI solution Chlorine activator
- Feed measuring unit
- Flow Control
- Flow rate meas
- Control cabinet
- Reaction chamber

pk 2 114 1

Tasks and requirements

- Biocide treatment of cooling water systems used in combination with chlorination processes.
- Chlorine activator is mixed with NaOCI to produce hyprobromide acid (HOBr) as an active biocide compound. HOBr is particularly effective at pH values from 7.5 to 9.0.
- A level of 0.5 g/m³ of active HOBr over a period of 1 hour is to be secured twice a day for the purpose of disinfecting the cooling water.

Operating conditions

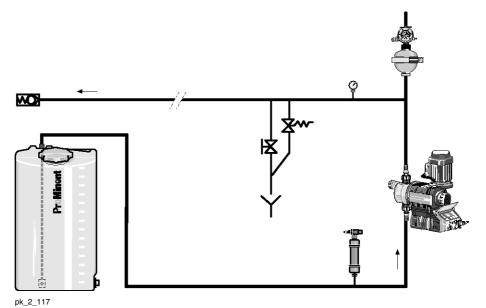
- Biologically polluted water
- Automatic activation of metering pumps

Application information

- The mixing ratio of chlorine activator and NaOCI (12.5 % solution) is 10 I to 26 52 I. The exact composition is to be determined by means of tests (on site).
- Metering pump with timer function activates the second pump and is therefore responsible for batch
- Motor pump is protected against overload by a pressure gauge with pressure switch. The pressure gauge is connected to the control system.
- The control system monitors the installation and switches off the flow meter in response to corresponding signals (fault signalling).

Solution

- gamma/ L metering pump with timer function (possibly with external timer)
- Sigma/ 1 metering pump, control version
- Feed monitoring, flow control
- Feed measuring facility
- Pressure gauge with pressure switch


Benefits

- Efficient disinfection in water containing alkali and ammoniac
- Inexpensive raw material basis that is also stable and non-corrosive
- High degree of reliability ensured by flow monitoring
- Simple and effective facility for optimising the chemical composition in connection with feed measuring

1.11.3 Safe and Reliable Chemical Metering with Reduced Pulsation

Product: Metering pump, accessories Metered medium: **High-viscosity chemicals** Application: Use of pulsation damper (PD)

Tasks and requirements

- For process-technical reasons, a low-pulsation metering flow is desired.
- Mass accelerating forces during metering, caused by the oscillating movement of the displacement body in connection with the piping geometry need to be reduced.
- Cavitation-free process flow

Operating conditions/environment

- Long suction/discharge lines
- Line cross-section with small dimensions
- Metering of high-viscosity, inert media

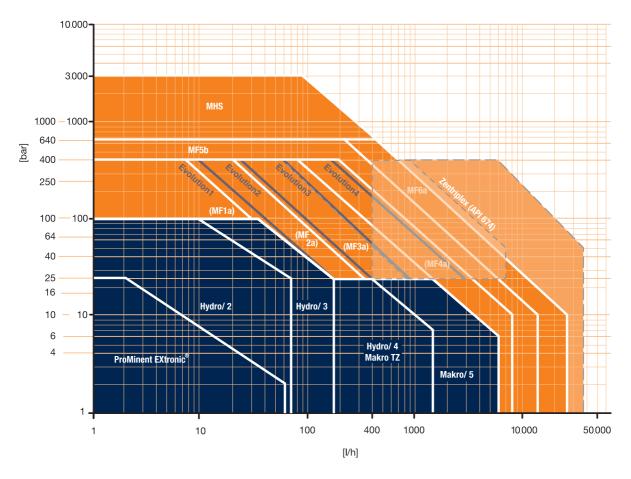
Notes on application

- Pressure surges increase with increasing metering line length and smaller diameter; these may result in impermissible pressure peaks.
- For longer pipes, as well as for higher viscosity media, the need for a PD using a pipe calculation programme is to be evaluated.
- In an oscillating motor-driven metering pump, the maximum flow rate is approx. 3 times greater than the mean, in a solenoid pump approx. 5 times as great. This is to be considered when designing pipings
- PD should be preloaded with compressed air or nitrogen at approx. 60-80% of the operating pressure to be expected.

Solution

- ProMinent® metering pumps
- Pressure-relief/overflow valves
- **Pulsation dampers**

Benefits


- Safe installation preventing damage to pumps and pipes
- Precise metering by avoiding of cavitation
- Compensation of delivery flow fluctuations

2.0 Overview of Process Metering Pumps

2.0.1

Selection Guide

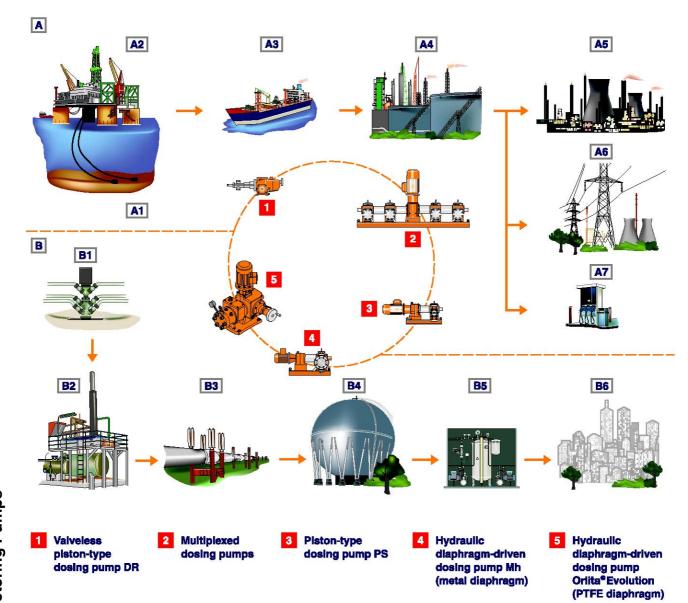
S43

Overview of Process Metering Pumps

15,000 18,000

Туре		EXBb	TZMb	М5Ма	HP2a	НР3а	HP4a	М5На	SBKa/ SCKa	MTKa	TZKa	M5Ka
Stroke length	mm	1.25	0 - 10	0 - 20	15	15	20	0 - 50	0 - 15	0 - 15	0 - 20	0 - 50
Connecting rod force	N	2,000	8,000	10,000	2,000	4,200	5,800	10,000	1,700	2,500	8,000	10,000
Туре		EF1a	EF2a	EF3a	EF4a	S 18	S 35	S 80	S 180	S 600	S 1400	Rb 15
Stroke length	mm	0 - 15	0 - 15	0 - 25	0 - 40	0 - 15	0 - 20	0 - 20	0 - 40	0 - 40	0 - 60	0 - 15
Connecting rod force	N	2,300	5,400	8,000	15,700	1,750	3,500	14,000	18,000	40,000	60,000	1,800
Туре		Rb 150	Zentrip	lex								
Stroke length	mm	0 - 32	40									

Process IV


Connecting rod force

2.0 Overview of Process Metering Pumps

2.0.2

- **Installation Applications**
- A Oil Industry
- A1 Well
- A2 Platform
- A3 Transportation (tanker, pipeline)
- A4 Refinery
- A5 Petrochemical
- A6 industry/power plants
- A7 Filling stations

- B Gas Industry
- B1 Wel
- B2 Gas treatment/gas drying
- B3 Transportation (tanker, pipeline)
- B4 Gas storage tank
- B5 Local distribution/odorization
- B6 Industry/power plants

pk_3_07

2.1 Diaphragm Metering Pump ProMinent EXtronic®

2.1.1

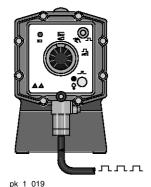
Diaphragm Metering Pump ProMinent EXtronic®

Precise metering with explosion protection

Capacity range of single pump: 0.19 - 60 l/h, 10 - 1.5 bar

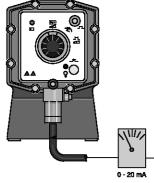
The diaphragm metering pump EXtronic® is perfectly suited for the sensitive use of liquid media in facilities with an explosive gas atmosphere as well as for mines at risk of firedamp, as it is approved in compliance with the EC EX Regulation 94/9/EC (ATEX).

The ATEX-compliant diaphragm metering pump EXtronic® (EXBb) is tested and approved in line with the harmonised EC provisions of EN 50014/50018 for "compression-resistant enclosures" and thus offers the maximum level of protection. The short-stroke solenoid and the complete pump control are integrated in the pump housing so that, together with the explosion-proof power end, there is IP 65 protection against contact and humidity as per DIN 40050 even when the front cover is open.


Your benefits

Optimum adaptation for use in areas at risk from explosion

- ATEX-compliant in line with EExd IIC T6 and EExd I/IIC T6
- Excellent operating and functional reliability by a microprocessor controller, which compensates for fluctuations of mains voltage and automatically switches from 50 to 60 Hz operation
- Broad range of applications with an operating voltage of 500 V, 230 V and 115 V
- Ease of integration into processes thanks to the range of control types (internal, external contact, analogue)
- Also suitable for gaseous media, thanks to self-bleeding head


pk_1_020 Control type "Internal"

Stroke length adjustment 1:10, stroke rate adjustment 1:25, total adjustment range 1:250.

Control type "External Contact"

Stroke length adjustment 1:10, Stroke frequency control 0 - 100% dependant upon external switch contacts. *)

pk_1_018

Control type "Analogue"

Stroke length adjustment 1:10, Stroke frequency control 0-100 % proportional to analogue signal 0/4-20 mA. *)

*) The electrical cables for mains connection, contact or analogue control are already connected to the pump. Observe all instructions concerning connecting and activating electrical systems.

Technical Details

- Stroke length: 1.25 mm, Rod force: 2,000 N
- Stroke length adjustment range: 0 100% in operation and idle
- Stroke length adjustment: manually by scaled rotary dial
- Metering reproducibility is better than ± 2% within the 30 100% stroke length range under defined conditions and with correct installation. Observe the information in the operating instructions
- DEVELOPAN® metering diaphragm with PTFE coating with diaphragm rupture control
- Wetted materials: Polypropylene, PVC, PTFE with carbon, clear acrylic, stainless steel, special designs available on request
- Degree of protection: IP 65 (also with open front cover)
- Short stroke solenoid drive and complete pump control integrated in the pump housing
- "Internal", "External contact" and "Analogue" control inputs available, the latter two also available as intrinsically safe and approved to EN 50020
- EXBb G for use in areas at risk from gases and vapours, degree of protection EEx [i,a] d IIC T6

This means:

- EEx Equipment complies with European standards
- [i,a] Control input is intrinsically safe when 2 independent errors occur
- d Type of ignition protection, compression-resistant enclosure
- IIC Explosion group II for all areas at risk from explosion with the exception of mining, sub-group IIC (includes IIA and IIB)
- \blacksquare T6 Temperature class permissible for gases and vapours with ignition temperature > 85 $^{\circ}\text{C}$
- EXBb M for use in mines at risk from firedamp, degree of protection EEx [i,a] d I/IIC T6

This means:

- EEx Equipment complies with European standards
- [i,a] Control input is intrinsically safe when 2 independent errors occur
- d Type of ignition protection, compression-resistant enclosure
- IC Explosion group I for mines at risk from firedamp
- IIC Explosion group II for all areas at risk from explosion with the exception of mining, sub-group IIC (includes IIA and IIB)
- T6 Temperature class permissible for gases and vapours with ignition temperature > 85 °C

Field of application

- Oil, gas and petrochemicals
- Mining
- For use in areas at risk of gases and vapours
- Use in mines at risk from firedamp

Process Metering Pumps

Diaphragm Metering Pump ProMinent EXtronic®

Technical Data

Type EXBb	Delivery rate at max. back pressure		Delive	ry rate at back p	medium pressure	Stroke rate	oØ x iØ	Suction lift	Shipping weight PP,NP,TT-SS	
	bar	l/h	ml/	bar	l/h	ml/	Strokes/	mm	m WC	kg
			stroke			stroke	min			
EXBb	,									
1000	10.0	0.19	0.03	5.0	0.27	0.04	120	6 x 4	1.5	12
2501	25.0	1.14	0.15	20.0	1.10	0.17	120	6 x 4	5.0	-
1601	16.0	1.00	0.15	8.0	1.30	0.18	120	6 x 4	5.0	12
1201	12.0	1.70	0.23	6.0	2.00	0.28	120	6 x 4	5.0	12
0803	8.0	3.70	0.51	4.0	3.90	0.54	120	6 x 4	3.0	12
1002	10.0	2.30	0.31	5.0	2.70	0.38	120	8 x 5	5.0	12
0308	3.0	8.60	1.20	1.5	10.30	1.43	120	8 x 5	5.0	12
2502	25.0	2.00	0.28	20.0	2.20	0.31	120	8 x 5	5.0	13
1006	10.0	6.00	0.83	5.0	7.20	1.00	120	8 x 5	5.0	13
0613	6.0	13.10	1.82	3.0	14.90	2.07	120	8 x 5	5.5	13
0417	3.5	17.40	2.42	2.0	17.90	2.49	120	12 x 9	4.5	13
2505	25.0	4.20	0.64	20.0	4.80	0.73	110	8 x 5	5.0	16
1310	13.0	10.50	1.59	6.0	11.90	1.80	110	8 x 5	5.0	16
0814	8.0	14.00	2.12	4.0	15.40	2.33	110	12 x 9	5.0	16
0430	3.5	27.00	4.09	2.0	29.50	4.47	110	DN 10	5.0	16
0260	1.5	60.00	9.09	_	-	_	110	DN 15	1.5	16
EXtronic® me	etering pur	nps for hig	jh viscosi	ty media						
1002	10.0	2.30	0.31	5.0	2.70	0.38	120	DN 10	1.8	-
1006	10.0	6.00	0.83	5.0	7.20	1.00	120	DN 10	2.0	-
1310	10.0	10.50	1.59	5.0	11.90	1.80	110	DN 15	2.8	-
0814	8.0	14.00	2.12	4.0	15.40	2.33	110	DN 15	2.0	_
EXtronic® me	etering pur	nps with s	elf-bleedi	ng liquid e	nd					
1601	16.0	0.66	0.09	_	_	_	120	6 x 4	1.8	-
1201	12.0	1.00	0.14	-	-	-	120	6 x 4	2.0	-
0803	8.0	2.40	0.33	-	-	-	120	6 x 4	2.8	_
1002	10.0	1.80	0.25	_	-	-	120	6 x 4	2.0	-

- Shipping weight for EXBb M version... additional 14 kg
- The data given here represent guaranteed minimum values, achieved with medium water at room temperature.

Materials in Contact With the Medium

	Liquid end	Suction/discharge connector	Seals	Balls (connection 6-12 mm)	Balls (connection DN 10 and DN 15)
PP1	Polypropylene	Polypropylene	EPDM	Ceramic	Borosilicate glass
PP4*	Polypropylene	Polypropylene	EPDM	-	Ceramic
NP1	Plexiglass	PVC	FKM A	Ceramic	Borosilicate glass
NP3	Plexiglass	PVC	FKM B	Ceramic	-
NS3**	Plexiglass	PVC	FKM B	Ceramic	-
PS3**	PVC	PVC	FKM B	Ceramic	-
TT1	PTFE with carbon	PTFE with carbon	PTFE	Ceramic	Ceramic
SS	Stainless steel mat. no. 1.4404	Stainless steel mat. no. 1.4404	PTFE	Ceramic	Stainless steel mat. no. 1.4404

- PP4 with valve springs made of Hastelloy C
- NS3 and PS3 with valve springs made of Hastelloy C, valve insert made of PVDF FKM = fluorine rubber

2.1 Diaphragm Metering Pump ProMinent EXtronic®

2.1.2 Identity Code Ordering System for EXBb

EXBb	_	osure i										
	G	Gas-E										
	М			losion p	rotection	ı, perm	itted liquid end material: stainless steel and PTFE					
		Capac		171-								
		1000	bar 10	I/h 0.19								
			25	1.14	(only a)	/ailable	in SS and SB)					
		1601		1.00	(0) a	· anabio						
		1201		1.70								
		0803	8	3.70								
		1002	10	2.30								
			3	8.60								
		2502		2.00	(availal	ole in S	S and SB only)					
		1006 0613		6.00 13.10								
		0417		17.40								
		2505		4.20	(only a)	/ailable	in SS and SB)					
		1310					e in NP, PP4, SS and SB)					
		0814		14.00			, , , ,					
		0430	4	27.00								
		0260	2	60.00								
					material							
							PDM O-ring high viscosity liquids with EPDM O-ring and Hastelloy C valve springs (Types 1002, 1006, 1310 and 0814 only)					
					with FK							
				, ,	with FK							
							ring*, self bleeding (Types 1601, 1201, 0803 and 1002 only)					
	PS3 PVC with FKM B O-ring*, self bleeding (Types 1601, 1201, 0803 and 1002 only)											
			TT1		with carl							
	SS1 Stainless steel, no. 1.4404, with PTFE seal											
				SS2 Stainless steel with 1/4" NPT internal thread, PTFE seal								
			SB1		Stainless steel with ISO 7 Rp 1/4 internal thread, ISO 7 Rp 1/2 on type 0260, PTFE seal (recommended for flammable materials) as SS1, with diaphragm rupture indicator Type 2501 only as SB1, with diaphragm rupture indicator Type 2501 only							
			Valve springs									
				0	No spri	ngs						
		With 2 valve springs, 1.4571, 0.1 bar Electrical connection										
				A 230 V, 50/60 Hz B 115 V, 50/60 Hz								
					ا		ol type					
						0	Manual stroke rate adjustment via potentiometer					
						1	External contact					
						2	Analogue 0-20 mA					
						3	Analogue 4-20 mA					
						4	External contact, intrinsically safe [i,a]					
						5 6	Analogue 0-20 mA, intrinsically safe [i,a] Analogue 4-20 mA, intrinsically safe [i,a]					
						7	Manual with zero volts ON/OFF					
						8	Manual with zero volts ON/OFF, intrinsically safe [i,a]					
							Control Versions					
							0 With potentiometer (control type 0, 7 and 8 only)					
							1 With manual auxiliary key for maximum stroke rate (control type 1-6 only)					
							With manual auxiliary frequency changer key for maximum stroke rate (control type 1-6 only)					
							Approved/Language					
							0 BVS - Europe, German, 100 V - 500 V					
							1 BVS - Europe, English, 100 V - 500 V 2 FM - USA, English, 115 V					
							3 CSA - Canada, English, 115 V, 230 V					
							Service and a control of the control					

^{*} FKM = Fluorine rubber

2.1 Diaphragm Metering Pump ProMinent EXtronic®

Design of connectors

With PP, NP, NS, PS and TT	6, 8 and 12 mm	Hose nozzle with clamping ring
With stainless steel SS1/SSM	6, 8 and 12 mm	Swagelok system threaded connector
With stainless steel SS2	6, 8 and 12 mm	Internal thread 1/4" NPT
With stainless steel SS1/SBM	6, 8 and 12 mm	Internal thread ISO 7 Rp 1/4

With PP and NP	DN 10 and DN 15	Hose nozzle d 16 - DN 10 and d 20 - DN 15
With TT	DN 10 and DN 15	Welding sleeve d 16 - DN 10 and d 20 - DN 15 (PVDF)
With stainless steel SS1	DN 10 and DN 15	Insert with internal thread R 3/80 and R 1/2"
With stainless steel SB1	DN 10 and DN 15	Internal thread ISO 7 Rp 1/4 and 1/2

Repeatability of metering ±2% when performed in line with the information in the operating instructions.

For type 1601 with self-bleeding dosing head $\pm 5\%$. Permissible ambient temperature: -20 °C to +45 °C.

Electrical connection: 500 V ±6%, 50/60 Hz

230 V ±10%, 50/60 Hz 115 V ±10%, 50/60 Hz

Degree of protection: IP 65, insulation class F

Average power consumption at max. stroke rate (W)/peak current during metering stroke (A) at 230 V, 50/60 Hz

EXBb	Type 1000, 2501, 1601, 1201, 0803, 1002, 0308	13 W/0.8 A	at 120 strokes/min.
EXBb	Type 2502, 1006, 0613, 0417	35 W/1.8 A	at 120 strokes/min.
EXBb	Type 2505, 1310, 1014, 0430, 0260	45 W/2.2 A	at 110 strokes/min.

Scope of delivery: Metering pump with mains cable (5 m) and connector parts for hose/pipe connection as per the table.

2.1.3 Spare Parts

Spare Parts Kits for Diaphragm Metering Pump ProMinent EXtronic®

Scope of delivery with material versions PP and NP:

- 1 Diaphragm
- 1 Suction valve, complete
- 1 Discharge valve, complete
- 2 Valve balls
- Sealing set, complete
- Connector kit

Scope of delivery with material versions NS3 and PS3:

- 1 Diaphragm
- Suction valve, complete
- 1 Connector component, complete
- 1 Discharge valve, complete
- Bleed valve, complete
- 1 Connector kit

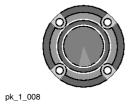
Scope of delivery with material version TT-PTFE:

- 1 Diaphragm
- 1 Suction valve, complete
- 1 Discharge valve, complete
- 2 Valve balls
- 2 Ball seat discs
- 1 Sealing set, complete
- 1 Connector kit

Scope of delivery with SS stainless steel material version:

- 1 Diaphragm
- 4 Valve balls
- 4 Ball seat discs
- 1 Sealing set, complete
- 1 Connector kit

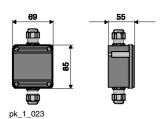
Diaphragm Metering Pump ProMinent EXtronic®


Pump type	Materials in contact with the medium		Order no.
EXBb 1000	PP1		740357
	NP3		740354
	TT		910776
	SS/SK		910777
EXBb 2501	SBM		1020281
	SSM		1020282
EXBb 1601	PP1		740361
	NP3		740358
	NS3/PS3		792033
	TT		910778
	SS/SK		910779
EXBb 1201	PP1		740380
	NP3		740362
	NS3/PS3		792034
	TT		910780
	SS/SK		910781
EXBb 0803	PP1		740384
	NP3		740381
	NS3/PS3		792035
	π		910782
	SS		910783
EXBb 1002/2502	PP1		740388
	NP3		740385
	NS3/PS3		792036
	TT		910784
	SS		910785
	HV/PP 4	Type 1002	910743
EXBb 0308/1006/2505	PP1		740497
	NP1		740498
	TT		910957
	SS		910959
	HV/PP4	Type 1006	910939
EXBb 0613/1310	PP1		740504
	NP1		740505
	TT		910969
	SS		910971
	HV/PP4	Type 1310	910941
EXBb 0417/0814	PP1		740501
	NP1		740502
	π		910977
	SS		910979
	HV/PP4	Type 0814	910943
EXBb 0430-DN 10	PP1		740507
	NP1		740508
	TT		910993
	SS		910995

Replacement parts set as DN 10 with one-way ball valves.

Process Metering Pumps

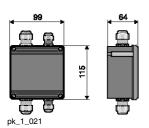
2.1 Diaphragm Metering Pump ProMinent EXtronic®


Spare Diaphragms for Diaphragm Metering Pump ProMinent EXtronic®

ProMinent® DEVELOPAN® EPDM metering diaphragms with woven inner layer, integrally vulcanised steel core and PTFE Teflon coating on the side in contact with the feed chemical.

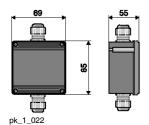
For pump type	Description	Order no.
1000	31.0 x 6.0	811452
2501	35.0 x 11.5	1000246
1601	48.0 x 9.5	811453
1201	48.0 x 12.5	811454
0803	48.0 x 18.5	811455
1002, 2502	60.0 x 17.0	811456
0308, 2505, 1006	60.0 x 28.0	811457
1310, 0613	76.0 x 37.0	811458
0814, 0417	76.0 x 45.0	811459
0430, 0230	127.5 x 63.0	811460
0260	127.5 x 91.0	811461

2.1.4


Ex-Proof Ancillary Equipment

Plastic terminal box: Type I

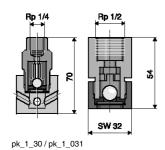
IP 66, EEx e II T 6, max. 380 V for mains connection, e.g. of ProMinent EXtronic® in areas at risk of explosion.


	Order no.
1 input, 1 output for power supply cable. 2 terminals + PE and	1000071
2 M 20-12 screw glands	

Plastic terminal box: Type II

IP 6, EEx e II T 6, max. 380 V. As type I, but with additional connector for control cable (e.g. for contact water meter or DULCOMETER® controller).

	Order no.
2 inputs (mains and controller cable), 2 outputs	1000072
2 terminals + PE, 1 partition, 2 terminals and	
2 M 20-12 screw glands and	
2 M 16-0.8 screw glands	


Plastic terminal box: EExi Type I

IP 66, EEx ia II T 6 for intrinsically safe control cable

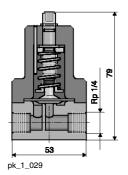
	Order no.
1 input, 1 output for control cable, 2 terminals and 2 M 16-0.8, blue	1000073
screw glands	

Process Metering Pumps

2.1 Diaphragm Metering Pump ProMinent EXtronic®

Stainless steel foot valve 1.4404 "SB"

With filter and ball check valve, designed for use with flammable materials. Materials: 1.4404/1.4401/PTFE/ceramic


	Order no.	
Connector ISO 7 Rp 1/4 SB version for ProMinent EXtronic®	809301	
Connector ISO 7 Rp 1/2 SB version for ProMinent EXtronic®	924561	

Stainless steel 1.4404 "SB" metering valve

Spring-loaded ball check valve designed for use with flammable materials. Materials: 1.4404/1.4401/ Hastelloy C/PTFE/ceramic

	Order no.
Connector ISO 7 Rp 1/4 - R 1/2, priming pressure approx. 0.5 bar	809302
Connector ISO 7 Rp 1/2 - R 1/2, priming pressure approx. 0.5 bar	924560

pk_1_032_2 / pk_1_027

Adjustable "SB" back pressure valve

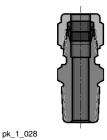
	Order no.
Operating range approx. 1-10 bar, closed version,	924555
designed for use with flammable materials.	

To generate a constant back pressure for accurate metering with a free outlet. Can also be used as an overflow valve.

PTFE metering pipe

Carbon-filled, surface resistance $< 10^7 \, \Omega$

Material	Length	Connection size o Ø x i Ø	Permissible pressure	Order no.
	m	mm	bar	
Carbon-filled PTFE	By the metre	6 x 4	*	1024831
Carbon-filled PTFE	By the metre	8 x 5	*	1024830
Carbon-filled PTFE	By the metre	12 x 9	*	1024832


* Permissible operating pressure at 20 °C in accordance with EN ISO 7751, ¼ of the rupture pressure, assuming chemical resistance and correct connection.

Additional ancillary equipment, i.e. foot valves, metering valves and back pressure valves in the usual material combinations, identical to gamma ancillary equipment and/or for connector DN 15 Vario ancillary equipment.

(Hydraulic/Mechanical Accessories see p. \rightarrow 1-46)

Diaphragm Metering Pump ProMinent EXtronic®

Stainless steel straight threaded connectors

Swagelok system in stainless steel SS 316 (1.4401) for connection of pipework to liquid ends and valves with internal thread and for SB version.

Normal threaded seal compounds required.

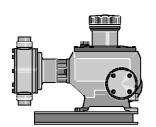
	Order no.
6 mm - ISO 7 R 1/4	359526
8 mm - ISO 7 R 1/4	359527
12 mm - ISO 7 R 1/4	359528
16 mm - ISO 7 R 1/2	359529

Process Metering Pumps

2.2.1

pk 2 012 Makro TZ TZMb

pk_2_013


Diaphragm Metering Pump Makro TZ

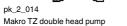
Capacity range of single pump: 260 - 2,100 l/h, 12 - 4 bar

Greater safety in continuous operation through mechanically deflected multi-layer safety diaphragm.

The modular construction of the diaphragm metering pump Makro TZ with adjustable eccentric drive mechanism and mechanically deflected multi-layer safety diaphragm makes it wonderfully adaptable to the capacity requirements of the respective application.

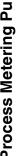
The diaphragm metering pump Makro TZ (TZMb) has an adjustable eccentric drive mechanism and, together with the Makro TZ plunger metering pump, forms a range of drive mechanisms with stroke lengths of 10 and/or 20 mm. This covers the capacity range from 8 to 2,100 l/h at 320 - 4 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Excellent process safety and reliability:


- Patented multi-layer safety diaphragm with integral diaphragm rupture warning system
- Metering reproducibility is better than ± 2% within the 30 100% stroke length range under defined conditions and with correct installation

Technical Details

- The modular construction with single and double head versions permits a wide range of applications, with the double head designs being operated in push-pull mode
- It is possible to combine up to 4 metering units, even with different pump capacities, in multiple pump
- 5 different gear ratios are available
- Customised designs are available on request


- Stroke length: 0-10 mm, Rod force: 8,000 N
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by scaled rotary dial in 0.5% increments (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 2% within the 30 100% stroke length range under defined conditions and with correct installation. Observe the information in the operating instructions
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with electrical diaphragm rupture warning system / warning via a contact)
- Wetted materials: Polypropylene, PVC, PTFE+25% carbon, stainless steel 1.4571. Special materials are available on request
- A wide range of power end versions is available: three-phase standard or 1-phase AC motor, motors for use in Exe and Exde areas, different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Salt water-resistant, acrylic resin-coated cast aluminium housing
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps

Makro TZ externally mounted nump

Field of application

- Volume-proportional metering of chemicals/additives in water treatment
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of additives in industrial production engineering

Technical Data

Type TZMb		With	1500 rpm n	notor at 50 Hz		With	1800 rpm n	notor at 60 Hz	Suction lift	Connection, suction/ discharge side	Shipping weight PP,NP, TT-SS
	_		very rate at	Max. stroke	_		ery rate at	Max. stroke			
	_		k pressure	rate	_		k pressure	rate			
-	bar	I/h	ml/stroke	Strokes/min	psi	l/h	gph (US)	Strokes/min	m WC	G-DN	kg
120260	12	260	60	72	174	312	82	86	4.0	1 1/2–25	46/54
120340	12	340	60	96	174	408	108	115	4.0	1 1/2–25	46/54
120430	12	430	60	120	174	516	136	144	4.0	1 1/2–25	46/54
120510	12	510	60	144	174	622	164	173	4.0	1 1/2–25	46/54
120650	12	640	60	180	174	-	_	-	4.0	1 1/2–25	46/54
070430	7	430	99	72	100	516	136	86	3.5	2–32	50/64
070570	7	570	99	96	100	684	181	115	3.5	2–32	50/64
070720	7	720	99	120	100	864	228	144	3.5	2-32	50/64
070860	7	860	99	144	100	1,032	273	173	3.5	2–32	50/64
071070	7	1,070	99	180	100	-	_	_	3.5	2–32	50/64
040840	4	840	194	72	58	1,008	266	86	3.0	2 1/4–40	56/80
041100	4	1,100	194	96	58	1,320	349	115	3.0	2 1/4-40	56/80
041400	4	1,400	194	120	58	1,680	444	144	3.0	2 1/4–40	56/80
041670	4	1,670	194	144	58	2,004	529	173	3.0	2 1/4-40	56/80
042100	4	2,100	194	180	58	-	-	-	3.0	2 1/4–40	56/80

Stroke length 10 mm

Plastic material design: max. 10 bar back pressure

The permissible priming pressure on the suction side is approximately 50% of the max. permitted back pressure

Materials in Contact With the Medium

			DN 25 I	oall valves	DN 32/	DN 40 plate valves **		
	Liquid end	Suction/ discharge connector	Seals	Valve balls	Valve seats	Seals	Valve plates/valve spring	Valve seats
PPT	Polypropylene	PVDF	PTFE	Borosilicate glass	PTFE	PTFE	Ceramic/ Hast. C + CTFE**	PTFE
PCT	PVC	PVDF	PTFE	Borosilicate glass	PTFE	PTFE	Ceramic/ Hast. C + CTFE**	PTFE
TTT	PTFE with carbon	PVDF	PTFE	Ceramic	PTFE	PTFE	Ceramic/ Hast. C + CTFE**	PTFE
SST	Stainless steel mat. no. 1.4404	Stainless steel mat. no. 1.4581	PTFE	Stainless steel mat. no. 1.4401	PTFE	PTFE	Stainless steel 1.4404/Hast. C	PTFE

Multi-layer safety diaphragms with PTFE coating.

The valve spring is coated with CTFE (similar to PTFE) Special versions on request.

2.2.2

Identity Code Ordering System for TZMb

Makro TZMb mechanically deflected diaphragm metering pump

TZMb	Drive t													
	Н	Main dı												
	Α	Add-on												
	D		main d											
	В		add-on	drive										
		Type*			07040	_		0.400.44						
		120260 120340			070430			040840						
		120340			070570 041100 070720 041400									
		120510			070720			041670						
		120650			071070			042100						
				end ma										
			PC	PVC										
			PP	Polypro	pylene									
			SS		ss steel									
			TT		- 25% c									
					g mate	rial								
				Т	PTFE		. la a al							
					Dispia	cement	t body ayer safe	aty diank	raam w	ith runtu	re indic	ator		
					'		l end ve		iiagiii w	itiiTuptu	i e inidic	atoi		
						0		ve spring	as					
						1		alve spri						
								ulic cor		1				
							0		ırd conn					
							1			and inse				
							2			nd inser				
							3			t and ins				
							4			nd inser	t .			
								Versio 0		oMinent	opol ®			
								2		Minent®				
								A				with fran	ne, simp	olex
								В	with Pr	oMinent	® logo,	with fran	ne, dupl	ex
								С			® logo,	with frar	ne, triple	eX
								М	Modifie					
										cal pow	er sup	ply		
									S R				Hz (WB	S) 230/400 V
									V (0)					gr. frequency converter
									Z (0)	Speed			WILLI IIILO	gr. rrequericy converter
									L				(Exe, Ex	xd)
									Р	-			(Exe, Ex	
									V (2)	variable	e speed	l motor v	vith integ	gr. frequency converter (Exd)
									4				ange 56	
									7				ange 12	
									8				ange 16 ounted	
									U		or, exte		ounteu	unve
										0			d) ISO c	lass F
										1		rsion AT		
										2	Exd ve	rsion A7	ΓEX-T4	
										Α	ATEX	power e	nd	
											Stroke	senso		
											0		oke sens	
1											1			nsor (Namur)
														adjustment manual
1												0		length adjustment, manual stroke actuator
												2		stroke actuator
1												3		0-20 mA stroke controller
												4		4-20 mA stroke controller
												5		0-20 mA stroke controller
												6	115 V 4	4-20 mA stroke controller (servo motors for Ex
														on request)
1													Applic	
													0	Standard

 $^{^{\}star}$ Digits 1 + 2=back pressure [bar]; digits 3 - 6=capacity [l/h]

^{**} Material version PCT/PPT/TTT max. 10 bar

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.75 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	1.5 kW	With PTC, speed adjustment range 1:20 with external fan 1ph 230 V; 50/60Hz
V0	1 ph, IP 55	230 V ±5%	50/60 Hz	1.1 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	0.75 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.75 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExellT3	250-280 V/440-480 V	60 Hz	0.75 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	0.75 kW	With PTC, speed control range 1:5
V2	3 ph, II2GEExdIICT4	400 V ±10%	50/60 Hz	1.5 kW	Ex-variable speed motor with integrated frequency converter

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.2.3 Spare Parts

The spare parts kit generally includes the wear parts for the liquid ends.

- 1 Metering diaphragm (multi-layer safety diaphragm)
- Suction valve complete
- 1 Discharge valve complete
- 2 Valve balls (DN 32/DN 40 with plate and spring)
- 1 Complete sealing set (O-rings or flat seals, valve seats, valve seat bushings)

Spare Parts Kits for Diaphragm Metering Pump Makro TZ (TZMb)

Identity Code: 120260, 120340, 120430, 120510, 120650

Liquid end	Materials in contact with the medium		Order no.
FM 650 - DN 25	PCT, PPT, TTT		1025164
	SST		1022896
	SST	without valves cpl.	1022895

Identity Code: 070430, 070570, 070720, 070860, 071070

Liquid end	Materials in contact with the medium		Order no.
FM 1100 - DN 32	PCT, PPT, TTT		1025167
	SST		1022917
	SST	without valves cpl.	1022916

Identity Code: 040840, 041100, 041400, 041670, 042100

Liquid end	Materials in contact with the medium		Order no.
FM 2100 - DN 40	PCT, PPT, TTT		1025169
	SST		1022930
	SST	without valves cpl.	1022929

Multi-Layer Metering Diaphragm for TZMb

ProMinent multi-layer safety diaphragm with diaphragm rupture warning system and PTFE Teflon coating on the wetted side.

Pump type	Order no.
Identity code: 120260, 120340, 120430, 120510, 120650; Makro TZ FM 650	1022887
Identity code: 070430, 070570, 070720, 070860, 071070; Makro TZ FM 1100	1022900
Identity code: 040840, 041100, 041400, 041670, 042100; Makro TZ FM 2100	1022921

Spare Parts Kits for Diaphragm Metering Pump Makro TZ (TZMa)

Identity Code: 120190, 120254, 120317, 120381

Liquid end	Materials in contact with the medium		Order no.
FM 260 - DN 20	PP		910452
	Р		910455
	Т		910458
	S	without valves cpl.	910475
	S		910461

Identity Code: 060397, 060529, 060661, 060793

Liquid end	Materials in contact with the medium	with the medium			
FM 530 - DN 25	PP		910453		
	Р		910456		
	Т		910459		
	S	without valves cpl.	910476		
	S		910462		

Identity Code: $030750,\,031000,\,031250,\,031500,\,031875,\,031050$, $031395,\,031740,\,032100,\,032500$

Liquid end	Materials in contact with the medium		Order no.
FM 1500/2100 - DN 40	PP		1001573
	Р		1001574
	Т		1001575
	S	without valves cpl.	1001577
	S		1001576

PTFE Metering Diaphragms for TZMa

ProMinent® DEVELOPAN® metering diaphragms with a generously-sized steel core vulcanised into fibre reinforced EPDM, with a PTFE Teflon coating on the process-wetted side.

Pump type	Order no.
Identity code: 100190, 120190, 100254, 100317, 120317, 100381, 120381; Makro TZ FM 260	811471
Identity code: 060397, 060529, 060661, 060793; Makro TZ FM 530	811472
Identity code: 030750, 031000, 031250, 031500, 031050, 031395, 031740, 032100, 032500; Makro TZ FM 1500/FM 2100	811473

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

Diaphragm Metering Pump Makro/ 5

2.3.1

Diaphragm Metering Pump Makro/ 5

It is not possible to do more with a mechanically deflected diaphragm Capacity range of single pump: 1,540 - 4,000 l/h, 4 bar

pk 2 099 Makro/ 5 M5Ma

pk_2_093

The diaphragm metering pump Makro/ 5 is used to meter reactants and catalysts in the chemical industry. Thanks to its modular construction, it can adapt outstandingly to the actual requirements of each application.

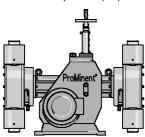
The diaphragm metering pump Makro/ 5 (M5Ma) together with the Makro/ 5 hydraulic diaphragm and plunger metering pumps form a range of drive mechanisms with stroke lengths of 20 and/or 50 mm. This covers the capacity range from 38 to 6,000 l/h at 320 – 4 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Your benefits

Process reliability:

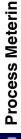
■ Metering reproducibility is better than ± 2% within the 30-100% stroke length range under defined conditions and with correct installation.

Excellent flexibility:


- The modular construction with single and double head versions permits a wide range of applications, with the double head designs being operated in push-pull mode
- It is possible to combine up to 4 metering units, even with different pump capacities, in multiple pump systems
- 5 different gear ratios are available
- Customised designs are available on request

Technical Details

- Stroke length: 0-20 mm, Rod force: 10,000 N
- Stroke length adjustment range: 0 100 %
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display in 0.5% increments (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 2% within the 30 100% stroke length range under defined conditions and with correct installation. Observe the information in the operating instructions
- Wetted materials: Polypropylene, PVC, PTFE+25% carbon, stainless steel 1.4571, special materials are available on request
- A wide range of power end versions is available: three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Salt water-resistant, acrylic resin-coated cast iron housing
- For reasons of safety, provide suitable overload protection mechanisms during the installation of all mechanically deflected diaphragm metering pumps


pk 2 098 Makro/ 5 externally mounted pump

pk_2_095 Makro/ 5 double head pump

Field of application

- Volume-proportional metering of chemicals/additives in water treatment
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of additives in industrial production engineering

Process Metering Pumps

Diaphragm Metering Pump Makro/5

Technical Data

Type M5Ma		With	1500 rpm n	notor at 50 Hz		With 1800 rpm motor at 60 Hz				Connection, suction/ discharge side	Shipping weight
			very rate at	Max. stroke rate	m		ery rate at k pressure	Max. stroke rate			
	bar	l/h	ml/stroke	Strokes/min	psi	l/h	gph (US)	Strokes/min	m WC	G-DN	kg
041540	4										
011010	4	1,540	427	60	58	1,822	481	71	3.0	2 3/4–50	320
041900	4	1,540 1,900	427 427	60 75	58 58	1,822 2,254	481 595	71 89	3.0 3.0	2 3/4–50 2 3/4–50	320 320
	-	,				,-					
041900	4	1,900	427	75	58	2,254	595	89	3.0	2 3/4–50	320

Stainless steel version: Shipping weight 340 kg

The permissible admission pressure on the intake side is approx. 50% of the maximum permissible back pressure.

Materials in Contact With the Medium

DN 50 plate valves

	Liquid end	Suction/discharge valve	Seals	Valve plates/valve spring	Valve seats
PPT	Polypropylene	Polypropylene	PTFE	Ceramic/ Hast. C + CTFE**	PTFE
PCT	PVC	PVC	PTFE	Ceramic/ Hast. C + CTFE**	PTFE
TTT	PTFE with carbon	PTFE with carbon	PTFE	Ceramic/ Hast. C + CTFE**	PTFE
SST	Stainless steel mat. no. 1.4571/1.4404	Stainless steel mat. no. 1.4571/1.4404	PTFE	Stainless steel mat. no. 1.4404/ Hast. C	PTFE

DEVELOPAN® metering diaphragm with PTFE coating.

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	3 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	3 kW	With PTC, speed control range 1:5
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	3.6 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	4 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExelIT3	250-280 V/440-480 V	60 Hz	3.6 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	4 kW	With PTC, speed control range 1:5

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

The valve spring is coated with CTFE (similar to PTFE) Special versions on request.

2.3.2

Identity Code Ordering System M5Ma

M5Ma motor-driven mechanically deflected diaphragm metering pump

M5Ma	Drive 1	type												
oma	Н		Aain drive											
	D	Double		ve										
	A	Add-on		-										
	В	Double		drive										
	5	Type												
		041540	l											
		041900												
		042600												
		043400												
		044000												
				end m	aterial									
			PC	PVC										
			PP		opylene									
			SS		ss stee									
			TT	PTFE -	+ 25% c	arbon								
					g mate	rial								
				Т	PTFE Displacement body									
									DTEE					
					Т		diaphra	_	PIFEC	bating				
						Liquid	end ve		ngo II-	ot C: C	1 ber			
						Ι'				st. C; 0.	ı Dar			
							Hydra 0		nection ard conn					
						1	1			and ins	ert			
							2			nd inser				
							3			ut and in				
							4	SS uni	on nut a	nd inser	t			
								Version	n					
								0	with Pr	oMinent	® logo,	no fram	е	
								2		t ProMin				
								Α		oMinent				
								В		oMinent	•			
								С		oMinent				
										oMinent	® logo,	with frai	me, qua	druplex
								M	M Modifi					
										ical pov	ver sup	ply	LI- (\A/F	20)
									S R				Hz (WE	•
									Z					30/400 V (R 1:5)
									L				: (Exe, E	00 V, 50/60 Hz
									P			Hz (Ex		xu)
									5				0 gearbo	nx .
									6				2 gearbo	
									0			gearbox		
										Enclos				
										0			d) ISO d	class F
										1	Exe ve	rsion A	TEX-T3	
										2	Exd ve	rsion A	TEX-T4	
										Α	ATEX	power e	nd	
												e senso		
											0		oke sens	
											1			nsor (Namur)
														adjustment
												0		length adjustment, manual
												3		0-20 mA stroke controller
												5		4-20 mA stroke controller 0-20 mA stroke controller
												6		u-20 mA stroke controller Il drive 115 V 4-20 mA
										6		ol drive 115 V 4-20 mA designs, such as explosion-proof, on request		
												-		
													Applic 0	Standard
													3	Temperature up to -20 °C
														romporature up to 20 0

2.3.3 Spare Parts

Spare Parts Kits for Diaphragm Metering Pump Makro/ 5 HM

The replacement part kit in general includes wear parts for the liquid ends.

- 1 Metering diaphragm
- 1 Suction valve compl.
- 1 Discharge valve compl.
- 2 Valve plate and Hast. C spring
- 1 Seal kit complete (envelope rings, valve seat/valve seat bushing)

Liquid end		Order no.
FM 4000 PCT		1008172
FM 4000 PPT		1008171
FM 4000 TTT		1008173
FM 4000 SST	without valves cpl.	1008174

PTFE Metering Diaphragms

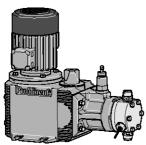
 ${\tt DEVELOPAN}^{\small @}\ diaphragm\ made\ of\ EPDM\ with\ woven\ fabric\ inlay,\ large-area,\ vulcanised\ aluminium\ core\ and\ PTFE-Teflon\ layer\ on\ the\ side\ in\ contact\ with\ the\ medium.$

	Order no.
Metering diaphragm for Makro/ 5 FM 4000	1009023

2.4.1

Hydraulic Diaphragm Metering Pump Hydro/ 2

For flexible metering with excellent process reliability in the medium pressure range.

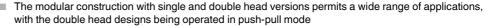

Capacity range of single pump: 3 - 72 l/h, 100 - 25 bar

sizes and 3 dosing head materials, offers a very high degree of flexibility in terms of areas of application.

The Hydro/ 2 hydraulic diaphragm metering pump (HP2a) together with the Hydro/ 3 and Hydro/ 4 pumps represent an integrated product range with stroke lengths of 15 and/or 20 mm. This covers the capacity range from 3 to 1.450 l/h at 100 – 7 har. A wide range of drive versions is available, including some for use

As an extremely robust hydraulic diaphragm metering pump, the Hydro/2 meets the most exacting safety requirements. Its modular construction, with either one or two dosing heads, 4 gear ratios, 2 dosing head

pk_2_074 Hvdro


represent an integrated product range with stroke lengths of 15 and/or 20 mm. This covers the capacity range from 3 to 1,450 l/h at 100 – 7 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification. The Hydro product range is designed to comply with API 675 among others.

Your benefits

Excellent process safety and reliability:

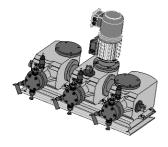
- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- Metering reproducibility is better than ± 1% within the 20-100% stroke volume range under defined conditions and with proper installation

Excellent flexibility:

- It is possible to combine up to 5 metering units, even with different pump capacities, in multiple pump systems
- 5 different gear ratios are available

pk_2_073 Hydro double head pump

Technical Details


- Stroke length: 15 mm, Rod force: 2,000 N
- Stroke volume adjustment range: 0 100%
- Stroke volume adjustment: manually by scaled rotary dial (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1% in the 20 to 100% stroke volume range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electric diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: PVDF, PTFE+25% carbon, stainless steel 1.4571, Hastelloy C.
- A wide range of power end versions is available: three-phase standard or 1-phase AC motor, motors for use in Exe and Exde areas, different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others

P_HY_0040_SW1
Hydro externally mounted pump

Field of application

- Oil and gas industry
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

P_PZ_0001_SW1 Hydro triplex pump

Technical Data

Type HP2a		Wi	ith 1500 r	pm motor at 50 Hz	'	With 1800 r	pm motor at 60 Hz	Suction lift	Perm. pre- pressure suction side	Connection on suction/ pressure side	Shipping weight	Plunger Ø
		Deliv	ery rate at max.	Max. stroke	De	livery rate at max.	Max. stroke					
	t	oack p	ressure	rate	bacl	c pressure	rate					
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h/gph (US)	Strokes/ min	m WC	bar	G-DN	kg	mm
100003*	100	3	0.8	60	1,450	3.6/1.0	72	3.0	5	Rp 1/4	31	16
100006*	100	6	8.0	125	1,450	7.0/1.8	150	3.0	5	Rp 1/4	31	16
100007*	100	7	0.8	150	1,450	8.0/2.1	180	3.0	5	Rp 1/4	31	16
100009*	100	9	8.0	187	1,450	11.0/2.9	224	3.0	5	Rp 1/4	31	16
100010*	100	10	0.8	212	-		-	3.0	5	Rp 1/4	31	16
064007	64	7	2.0	60	928	8.4/2.2	72	3.0	5	G 3/4-10	31	18
064015	64	15	2.0	125	928	18.0/4.8	150	3.0	5	G 3/4-10	31	18
064018	64	18	2.0	150	928	21.0/5.5	180	3.0	5	G 3/4-10	31	18
064022	64	22	2.0	187	928	26.0/6.9	224	3.0	5	G 3/4-10	31	18
064025	64	25	2.0	212	_		-	3.0	5	G 3/4-10	31	18
025019	25	19	5.3	60	362	23.0/6.1	72	3.0	5	G 3/4-10**	31	26
025040	25	40	5.3	125	362	48.0/12.7	150	3.0	5	G 3/4-10**	31	26
025048	25	48	5.3	150	362	58.0/15.3	180	3.0	5	G 3/4-10**	31	26
025060	25	60	5.3	187	362	72.0/19.0	224	3.0	5	G 3/4-10**	31	26
025068	25	68	5.3	212	_		-	3.0	5	G 3/4-10**	31	26

Material version PVDF max. 25 bar.

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls
SST	Stainless steel 1.4571/1.4404	Stainless steel 1.4581	PTFE/ZrO ₂	Ceramic
PVT	PVDF (polyvinylidene fluoride)	PVDF (polyvinylidene fluoride)	PTFE/PTFE	Ceramic
HCT	Hast. C	Hast. C	PTFE/Hast. C	Ceramic
TTT*	PTFE + 25% carbon	PVDF (polyvinylidene fluoride)	PTFE/PTFE	Ceramic

 $^{^{\}star}$ Specifically for areas at risk from explosion

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.37 kW	
Т	3 ph, IP 55	220-240 V/380-420 V 265-280 V/440-480 V	50 Hz 60 Hz	0.37 kW	With PTC, speed adjustment range 1:5
R	3 ph, IP 55	230 V/400 V	50/60 Hz	0.37 kW	With PTC, speed adjustment range 1:20 with external fan 1ph 230 V; 50/60Hz
V0	1 ph, IP 55	230 V ±10%	50/60 Hz	0.37 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExelIT3	220-240 V/380-420 V	50 Hz	0.37 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.37 kW	With PTC, speed adjustment range 1:5
P1	3 ph, II2GEExellT3	254-277 V/440-480 V	60 Hz	0.37 kW	
P2	3 ph, II2GEExdIICT4	254-277 V/440-480 V	60 Hz	0.37 kW	With PTC, speed adjustment range 1:5
V2	3 ph, II2GEExdIICT4	400 V ±10%	50/60 Hz	0.55 kW	Ex-variable speed motor with integrated frequency converter.

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

Material design SST/HCT with double ball valve, valve connector on the suction-pressure
 ** HV design side as standard with internal thread Rp 1/4 and external thread G 3/4 - DN 10

^{**} HV design with G1 - DN 15 connector

2.4.2 Identity Code Ordering System HP2a

Hydro/ 2 (HP2a)

D.:				-	`	_ u,							
Drive t H	ype I Main driv	/P											
n D			ble-hear	version	n								
E	Main drive, double-head version Main drive for add on drive												
– F		fain drive, double-head version for add-on drive											
A	Add-on	·											
В	Double-l												
Т	-	Triplex comprising 3 power ends and 3 identical heads											
	Type*												
	100003	bar 100	I/h 3		064007	bar 64	l/h 7		025019	bar 25	I/h 19		
		100	6		064007		, 15		025019		40		
		100	7		064018		18		025048		48		
		100	9		064022		22		025060		60		
	100010	100	10		064025	64	25		025068	25	68		
			d end ma										
		SS		ss steel									
		PV HC			r 025019	- 02506	8, 0640	07 - 064	025)				
		TT	Hastell	ioy C + 25% c	arhon								
				g mate									
			Т	PTFE	iui								
				Displa	cement l	ody*							
			1	0			ayer dia	phragm	with rupt	ure sign	alling fac	cility	
			1		Liquid e								
					0			gs (stan	dard)				
					1 D		alve spri	•	for CCT	and UC	Τ\		
					Н				/ for SST :5019-025		1)		
								nection		,000,			
						0			ded conn	ector			
						E	With D	IN ISO f	lange				
						F		NSI flan	ge				
							Versio		a N din a mat®	lana			
							0		oMinent®		,		
						1 without ProMinent® logo M Modified							
									cal powe	er supp	lv		
								S	3 ph, 23			Hz, 0,37	kW
								Т	3 ph, 23				
								R					0 V/400 V, 0.37 kW
								V (0)		•		_	rated frequency converter
								Z L					t, 230 V, 50/60 Hz kd), 0.37 kW
								P			,		(d), 0.37 kW
								V (2)					r. frequency converter (Exd)
								1	no moto	r, with m	otor flar	nge B 14	4, size 200
								3					size 160
								4	no moto	,	otor flar	nge NEN	MA 56 C
								0	Add on o				
									Enclosu 0		ig standard	4)	
									1		otor vers		EX-T3
									2		notor ve		
									Α	ATEX	power e	nd	
											senso		
										0			sor (standard)
										1			(for explosion-proof applications)
											O Stroke		adjustment al (standard)
											1		troke positioning motor, 230 V/50/60 Hz
											2		troke positioning motor, 115 V/60 Hz
											A		troke control motor 020 mA 230 V/50/60 H
			1								В	With st	troke control motor 420 mA 230 V/50/60 F
			1								С		troke control motor 020 mA 115 V/60 Hz
			1								D	With st	troke control motor 420 mA 115 V/60 Hz
													ulic oil
												0	Standard
												1	Food grade
			4	1	i	Ī	İ		ĺ	Ì	1	2	Low temperature to -25 °C
												3	Low temperature Zone 2

^{*} PVT max. 25 bar

2.4.3 **Spare Parts**

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with SST/HCT material version

- Diaphragm
- Valve balls
- Sealing set, complete

Scope of delivery with PVT material version

- Suction valve, complete
- Discharge valve, complete
- 2 Valve balls
- Sealing set, complete

Spare parts kits for Hydro/ 2

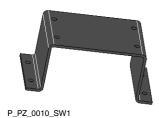
Applies to identity code: Type 100010, 100009, 100007, 100006, 100003, 064025, 064022, 064018, 064015, 064007

Liquid end	Materials in contact with the medium		Order no.
FMH 25 - DN 10	PVT		1005548
	SST		1005549
	SST	for double ball valves	1029260
	HCT		1009571
	SST	with valves cpl.	1005550

Applies to identity code: Type 025068, 025060, 025048, 025040, 025019

Liquid end	Materials in contact with the medium		Order no.
FMH 60 - DN 10	PVT		1005552
	SST		1005553
	SST	for double ball valves	1005555
	HCT		1009573
	SST	with valves cpl.	1005554

PTFE/1.4404 Metering Diaphragms for Hydro/ 2


Liquid end		Order no.
FMH 25	Applies to identity code (SST): 100010, 100009, 100007, 100006, 100003, 064025, 064022, 064018, 064015, 064007	1005545
FMH 60	Applies to identity code (SST): 026068, 025060, 025048, 025040, 025019	1005546

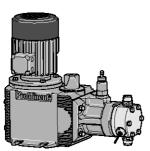
Diaphragms PTFE/Hastelloy C Coated for Hydro/ 2

Liquid end		Order no.
FMH 25	Applies to identity code (PVT/HCT): 064025, 064022, 064018, 064015, 064007	1006481
FMH 60	Applies to identity code: 025068, 025060, 025048, 025040, 025019	1006482

Base for Hydro hydraulic diaphragm metering pumps

	Order no.	
Base for Hydro/ 2, dimensions: 300 x 160 x 128 mm (LxWxH)	1005660	

2.5.1

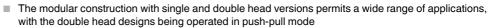

Hydraulic Diaphragm Metering Pump Hydro/ 3

For flexible metering with excellent process reliability in the medium pressure range.

Capacity range of single pump: 10 - 180 l/h, 100 - 25 bar

The Hydro/ 3 is an extremely robust hydraulic diaphragm metering pump. It meets the most exacting safety requirements. Its modular construction offers extremely good flexibility in terms of application, for example in the oil and gas industry.

pk_2_074 Hydro

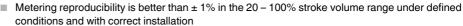

The Hydro/ 3 hydraulic diaphragm metering pump (HP3a) together with the Hydro/ 2 and Hydro/ 4 pumps represent an integrated product range with stroke lengths of 15 and/or 20 mm. This covers the capacity range from 3 to 1,450 l/h at 100 – 7 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification. The Hydro product range is designed to comply with API 675 among others.

Your benefits

Excellent process safety and reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- Metering reproducibility is better than ± 1% within the 20-100% stroke volume range under defined conditions and with proper installation

Excellent flexibility:

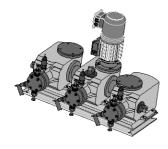

- It is possible to combine up to 5 metering units, even with different pump capacities, in multiple pump systems
- 5 different gear ratios are available
- Customised designs are available on request

pk_2_073 Hydro double head pump

Technical Details

- Stroke length: 15 mm, Rod force: 4,200 N
- Stroke volume adjustment range: 0 100%
- Stroke volume adjustment: manually by scaled rotary dial (optionally with electric actuator or control drive)

- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: PVDF, PTFE+25% carbon, stainless steel 1.4571, Hastellov C.
- A wide range of power end versions is available: three-phase standard or 1-phase AC motor, motors for use in Exe and Exde areas, different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others



P_HY_0040_SW1

Hydro externally mounted pump

Field of application

- Oil and gas industry.
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

P_PZ_0001_SW1 Hydro triplex pump

Technical Data

Type HP3a		W	/ith 1500 r	pm motor at 50 Hz	With 1800 rpm motor at 60 Hz		Suction lift	Perm. pre- pressure	Connection suction/	Shipping weight	Plunger Ø	
	ı		ery rate at max. pressure	Max. stroke rate		at max. pressure	Max. stroke rate		suction side	discharge side		
		l/h	ml/	Strokes/	psi	l/h/gph	Strokes/	m WC	bar	G-DN	kg	mm
	bar		stroke	min		(US)	min					
100010*	100	10	2.8	60	1,450	12/3.2	72	3.0	5	Rp 3/8–10	41	22
100021*	100	21	2.8	125	1,450	25/6.6	150	3.0	5	Rp 3/8-10	41	22
100025*	100	25	2.8	150	1,450	30/7.9	180	3.0	5	Rp 3/8–10	41	22
100031*	100	31	2.8	187	1,450	37/9.8	224	3.0	5	Rp 3/8-10	41	22
100035*	100	35	2.8	212	1,450		-	3.0	5	Rp 3/8–10	41	22
064019	64	19	5.3	60	928	23/6.1	72	3.0	5	G 3/4-10**	41	26
064040	64	40	5.3	125	928	48/12.7	150	3.0	5	G 3/4-10**	41	26
064048	64	48	5.3	150	928	58/15.3	180	3.0	5	G 3/4-10**	41	26
064060	64	60	5.3	187	928	72/19.0	224	3.0	5	G 3/4-10**	41	26
064068	64	68	5.3	212	928		-	3.0	5	G 3/4-10**	41	26
025048	25	48	13.4	60	362	58/15.3	72	3.0	5	G 1–15***	41	38
025100	25	100	13.4	125	362	120/31.7	150	3.0	5	G 1–15***	41	38
025120	25	120	13.4	150	362	144/38.0	180	3.0	5	G 1–15***	41	38
025150	25	150	13.4	187	362	180/47.6	224	3.0	5	G 1–15***	41	38
025170	25	170	13.4	212	362		-	3.0	5	G 1–15***	41	38

Material version PVDF max. 25 bar.

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls
SST	Stainless steel 1.4571/1.4404	Stainless steel 1.4581	PTFE/ZrO ₂	Ceramic
PVT	PVDF (polyvinylidene fluoride)	PVDF (polyvinylidene fluoride)	PTFE/PTFE	Ceramic
HCT	Hast. C	Hast. C	PTFE/Hast. C	Ceramic
TTT*	PTFE + 25% carbon	PVDF (polyvinylidene fluoride)	PTFE/PTFE	Ceramic

^{*} Specifically for areas at risk from explosion

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.75 kW	
Т	3 ph, IP 55	220-240 V/380-420 V 265-280 V/440-480 V	50 Hz 60 Hz	0,75 kW	with PTC, speed adjustment range 1:5
R	3 ph, IP 55	230 V/400 V	50/60 Hz	0.75 kW	with PTC, speed control range 1:20 with external fan 1 ph 230 V; 50/60 Hz
V0	1 ph, IP 55	230 V ±10%	50/60 Hz	0.75 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExelIT3	220-240 V/380-420 V	50 Hz	0.75 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.75 kW	with PTC, speed adjustment range 1:5
P1	3 ph, II2GEExellT3	254-277 V/440-480 V	60 Hz	0.75 kW	
P2	3 ph, II2GEExdIICT4	254-277 V/440-480 V	60 Hz	0.75 kW	with PTC, speed adjustment range 1:5
V2	3 ph, II2GEExdIICT4	400 V ±10%	50/60 Hz	0.75 kW	Ex-variable speed motor with integrated frequency converter.

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

^{*} Material version SST/HCT with double ball valve, valve connection on suction/discharge side designed as standard with internal thread Rp 3/8 and external, thread G 3/4-DN 10

^{***}HV version with 1 1/4" DN 20 connection

^{*} HV version with G 1 - DN 15 connection

2.5.2

Identity Code Ordering System HP3a

Hydro/ 3 (HP3a)

Drive	tvne												
H	Main dri	ve											
D		Main drive Main drive, double-head version											
E		,	ıdd-on dı		••								
F					n for ad	d-on drive							
A	Add-on		ibie-liea(u vei 510	iii ioi au	a-on unve							
В			ersion ac	ام مما	ul								
T						identical l	hoods						
'	-	ompns	ing 5 po	wer end	is and 5	identican	leaus						
	Type*	l bar	1/1-				h a u	1/6				hau	1/1-
	100010	bar 100	l/h 10			064019	bar	I/h 19			025048	bar 25	I/h 48
	100010	100				064040		40			025100		100
		100	21								025100		
	100025		25			064048		48					120
	100031	100	31			064060		60			025150		150
	100035		35			064068	64	68			025170	25	170
			d end m		J								
		SS		ess stee		alu fau 00	E040 /	005170	064040	06406	0)		
		PV		•	25 bar, o	nly for 02	5048 - ()25170,	064019	- 06406	8)		
		HC	Hastel	•									
		TT		+ 25% (
				g mate									
			Т	PTFE									
					acemen							-:!!	
		Ī	1	0		ard multi-l	,	pnragm	with rup	iure sig	nalling ta	cility	
						l end ver		a /at '	- u-d\				
					0			s (stand	aru)				
						With val		•	00010 1	00005	064040	064000	only for CCT and LICT\
					D	HV-Vers		e (for 1	00010-1	UUU35,	U04U19-C	<i>1</i> 04060,	only for SST and HCT)
					Н								
						Hydrau		nection ard threa					
						0				inector			
						E F		IN ISO 1	•				
						F		NSI flan	ge				
							Version			_			
							0		oMinent				
							1		t ProMin	ent® log	jo		
							М	Modifie					
									ical pov				
								S			V, 50/60 I		
								T			V, 50/60 I		
								R			•		0 V/400 V, 0.75 kW
								V (0)				_	grated frequency converter
								Z			•		t, 230 V, 50/60 Hz
								L			,	,	d), 0.75 kW
								Р					d), 0.75 kW
								V (2)		•		_	gr. frequency converter (Exd)
								1	no mot	or, with	motor flaı	nge B 1	4, size 200
		Ī	1					3	no mot	or, with	motor flai	nge B5,	size 160
					1			4			motor flaı	nge NEI	MA 56 C
					1			0	Add on	drive			
		Ī	1						Enclos	ure rat			
		Ī	1						0	,	standard)		
					1				1	Exe mo	otor version	on ATE	X-T3
					1				2	Exd m	otor versi	on ATE	X-T4
		Ī	1						Α	ATEX	oower en	d	
		Ī	1							Stroke	sensor		
					1					0		e senso	or (standard)
					1					1	Stroke s	ensor (f	for explosion-proof applications)
					1						Stroke	length a	adjustment
		Ī	1								0		al (Standard)
					1						1		troke positioning motor, 230 V/50/60 Hz
					1						2		troke positioning motor, 115 V/60 Hz
					1						A		troke control motor 0-20 mA 230 V/50/60 H
					1						В		troke control motor 4-20 mA 230 V/50/60 H
1					1						C	_	troke control motor 0-20 mA 115 V/60 Hz
					1						D		troke control motor 4-20 mA 115 V/60 Hz
		Ì	1	Ì							ا ّ		rulic oil
									•				
												0	Standard

* PVT max. 25 bar

2.5.3 Spare Parts

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with SST/HCT material version

- 1 Diaphragm
- 2 Valve balls
- 1 Sealing set, complete

Scope of delivery with PVT material version

- 1 Diaphragm
- 1 Suction valve, complete
- 1 Discharge valve, complete
- 2 Valve balls
- 1 Sealing set, complete

Spare parts kits for Hydro/ 3

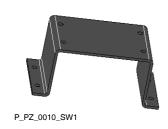
Applies to identity code: Type 100035, 100031, 100025, 100021, 100010, 064068, 064060, 064048, 064040, 064019

Liquid end	Materials in contact with the medium		Order no.
FMH 60 - DN 10	PVT		1005552
	SST		1005553
	SST	for double ball valves	1005555
	HCT		1009573
	SST	with valves cpl.	1005554

Applies to identity code: Type 025170, 025150, 025120, 025100, 025048

Liquid end	Materials in contact with the medium		Order no.
FMH 150 - DN 15	PVT		1005556
	SST		1005557
	HCT		1009575
	SST	with valves cpl.	1005558

Metering Diaphragm PTFE/1.4404 for Hydro/ 3


Liquid end		Order no.
FMH 60	Applies to identity code (SST) 064025, 064022, 064018, 064015, 064007, 100010, 100009, 100007, 100006, 100003	1005546
FMH 150	Applies to identity code (SST): 025170, 025150, 025120, 025100, 025048	1005547

Diaphragms PTFE/Hastelloy C Coated for Hydro/ 3

Liquid end		Order no.
FMH 25	Applies to identity code (PVT/HCT): 064025, 064022, 064018, 064015, 064007	1006481
FMH 60	Applies to identity code: 025068, 025060, 025048, 025040, 025019	1006482

Base for Hydro hydraulic diaphragm metering pumps

	Order no.	
Base for Hydro/ 3, dimensions: 324 x 180 x 128 mm (LxWxH)	1005661	

2.6.1

Hydraulic Diaphragm Metering Pump Hydro/ 4

For flexible metering with excellent process reliability in the medium pressure range.

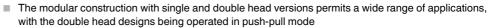
Capacity range of single pump: 130 - 1,450 l/h, 25 - 7 bar

The Hydro/ 4 is an extremely robust hydraulic diaphragm metering pump, which meets the most exacting safety requirements - it is equipped as standard with a pressure relief valve and PTFE multi-layer diaphragm with diaphragm rupture warning system. Its modular construction offers extremely good flexibility in terms of applications.

pk_2_074 Hydro

pk 2 073

Hydro double head pump


The Hydro/ 4 hydraulic diaphragm metering pump (HP4a) together with the Hydro/ 2 and Hydro/ 3 pumps represent an integrated product range with stroke lengths of 15 and/or 20 mm. This covers the capacity range from 3 to 1,450 l/h at 100 - 7 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification. The Hydro product range is designed to comply with API 675 among others.

Your benefits

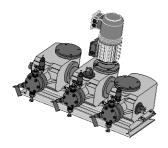
Excellent process safety and reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- Metering reproducibility is better than ± 1% in the 20-100% stroke volume range under defined conditions and with proper installation.

Excellent flexibility:

- It is possible to combine up to 5 metering units, even with different pump capacities, in multiple pump systems
- 5 different gear ratios are available
- Customised designs are available on request

Technical Details


- Stroke volume adjustment range: 0 100%
- Stroke volume adjustment: manually by scaled rotary dial (optionally with electric actuator or control
- Metering reproducibility is better than ± 1% in the 20 100% stroke volume range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: PVDF, PTFE+25% carbon, stainless steel 1.4571, Hastelloy C.
- A wide range of power end versions is available: three-phase standard or 1-phase AC motor, motors for use in Exe and Exde areas, different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others

P_HY_0040_SW1

Hydro externally mounted pump

Field of application

- Oil and gas industry.
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

P_PZ_0001_SW1 Hydro triplex pump

Technical Data

Type HP4a			1 1500 rpm motor at 50 Hz With 1800 rpm motor at 60 Hz Suction Perm. pre- Connection lift pressure suction/				suction/	Shipping weight	Plunger Ø		
		ery rate at max. ressure	Max. stroke rate	b	Delivery rate at max. ack pressure	Max. stroke rate		suction side	discharge side		
	bar	l/h	Strokes/	psi	I/h/gph (US)	Strokes/	m WC	bar	G-DN	kg	mm
250130	25	130	min 71	363	155/41	min 86	3	1	G 1 1/2–25	69	52
250130	25	190	103	363	230/61	124	3	1	G 1 1/2-25	69	52
250250	25	250	136	363	300/79	164	3	1	G 1 1/2-25 G 1 1/2-25	69	52
250250	25	350	188	363	420/111	225	3	1	G 1 1/2-25	69	52
250330	25	400	214	303	420/111	223	3	1	G 1 1/2-25 G 1 1/2-25	69	52
160210	16	210	71	232	250/66	86	3	1	G 1 1/2-25	76	63
160300	16	300	103	232	360/95	124	3	1	G 1 1/2-25 G 1 1/2-25	76	63
160400	16	400	136	232	480/127	164	3	1	G 1 1/2-25	76	63
	16	550		232			3	1			
160550			188	232	660/174	225	-	·	G 1 1/2–25	76	63
160625	16	625	214	-	400/400	_	3	1	G 1 1/2–25	76	63
100330	10	330	71	145	400/106	86	3	1	G 2–32	87	80
100480	10	480	103	145	580/153	124	3	1	G 2–32	87	80
100635	10	635	136	145	760/201	164	3	1	G 2–32	87	80
100880	10	880	188	145	1,050/277	225	3	1	G 2–32	87	80
101000	10	1,000	214	_		_	3	1	G 2–32	87	80
070465	7	465	71	102	560/148	86	3	1	G 2 1/4–40	96	94
070670	7	670	103	102	805/213	124	3	1	G 2 1/4–40	96	94
070890	7	890	136	102	1,070/283	164	3	1	G 2 1/4–40	96	94
071230	7	1,230	188	102	1,450/383	225	3	1	G 2 1/4–40	96	94
071400	7	1,400	214	-		-	3	1	G 2 1/4–40	96	94

Materials in Contact With the Medium

			DN 25	ball valves		DN 32/DN 40 plate valves				
Material	Dosing head	Suction/pressure connector	Seals	Valve balls	Valve seats	Seals	Valve plates/ valve springs	Valve seats		
SST	Stainless steel 1.4404	Stainless steel 1.4404	PTFE	Stainless steel 1.4404	PTFE	PTFE	Stainless steel 1.4404/ Hast. C	PTFE		
PVT	PVDF (polyvinylidene fluoride)	PVDF (polyvinylidene fluoride)	PTFE	Glass	PTFE	PTFE	Ceramic/E-CTFE	PTFE		
HCT	Hast. C	Hast. C	PTFE	Hast. C	PTFE	PTFE	Hast. C / E-CTFE	PTFE		
TTT*	PTFE + 25% carbon	PVDF (polyvinylidene fluoride)	PTFE	Glass	PTFE	PTFE	Ceramic/E-CTFE	PTFE		

^{*} Specifically for areas at risk from explosion

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V	50 Hz	1.1 kW	
		250-280 V/440-480 V	60 Hz		
T	3 ph, IP 55	220-240 V/380-420 V	50 Hz	1.1 kW	With PTC, speed control range 1:5
		265-280 V/440-480 V	60 Hz		
R	3 ph, IP 55	230 V/400 V	50/60 Hz	1.5 kW	With PTC, speed control range 1:20, with external fan 1 ph 230 V; 50/60 Hz
V0	3 ph, IP 55	400 V	50/60 Hz	1.5 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	1.1 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	1.1 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExellT3	254-277 V/440-480 V	60 Hz	1.1 kW	
P2	3 ph, II2GEExdIICT4	254-277 V/440-480 V	60 Hz	1.1 kW	With PTC, speed control range 1:5
V2	3 ph, II2GEExdIICT4	400 V ±10%	50/60 Hz	1.5 kW	Ex-variable speed motor with integrated frequency converter

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.6.2

Identity Code Ordering System HP4a

Hydro/ 4 (HP4a)

Drive	tvpe														
Н	Main dr	ive													
D	Main dr		ble-head	d versio	n										
E	Main dr	,													
F	I .				n for add-	on driv	e								
A	Add-on					anv	-								
В	Double-		arsion ac	ld-op dr	ive										
T					ls and 3 ic	lentical	heads								
	Type*	compns	ing 5 po	wei eilu	is and sit	iciticai	ileaus								
	.,,,,	bar	l/h			bar	l/h				bar	l/h		bar	l/h
	250130	25	130		160210	16	210			100330	10	330		070465 7	465
	250190	25	190		160300	16	300			100480	10	480		070670 7	670
	250250	25	250		160400	16	400			100635	10	635		070890 7	890
	250350	25	350		160550	16	550			100880	10	880		071230 7	1,230
	250400	25	400		160625	16	625			101000	10	1,000		071400 7	1,400
			end ma												
		SS		ss steel											
		PV	PVDF												
		HC	Hastell	oy C											
		TT	PTFE +	- 25% ca	arbon										
			Sealing	g mater	rial										
			Т	PTFE											
				Displa 0	cement I		avor dic-	hraam	with run	ure signa	alling fo	cilit.			
				١	Liquid 6			magin	with tup	ure sign	amiy ia	CIIILY			
					0		ve spring	ıs (stan	dard)						
					1		alve spri								
			1		1		ulic con	•	n						
			1		1	0			aded con	nection					
						Ē	With D	N ISO	lange						
						F		NSI flan	U						
							Versio		3-						
			1		1		0		oMinent	® logo					
			1		1		1			ent® logo)				
							3					etrical ove	erpressure disp	olav	
							M	Modifie		. logo, v	6160	Janoar OVE	or procedure uisp	onay	
										er supp	lv				
								S				Hz, 1.1 k	·W		
			1		1			T				Hz, i.i k			
	1		1					R					/400 V, 1.5 kW		
	1		1												
								V (0) Z				•	rated frequency	•	
													230 V, 50/60 F	12	
								L				•	d), 1.1 kW		
								P				•	d), 1.1 kW		
								V (2)				•	r. frequency co	nverter (Exd)	
								1		or, with m		•			
1			1		1			3				nge B5, s			
								4 0	no mot		notor fla	nge NEM	//A 143/145 TC	;	
								U			24				
									0	IP 55 (st)			
			1		1				1	,		, ion ATEX	(-T3		
									2			ion ATEX			
									A	ATEX po			· -		
										Stroke					
										0			or (standard)		
										1			` ,	roof applications	s)
													adjustment		
											0		(Standard)		
											K		(outdoor, SS)		
											1			g motor, 230 V/50	0/60 Hz
											2			g motor, 115 V/60	
			1		1						A		, ,	otor 0-20 mA 230	
											В	_		otor 4-20 mA 230	
1			1		1						С	_		otor 4-20 mA 230 otor 0-20 mA 115	
			1		1						D			otor 0-20 mA 115 otor 4-20 mA 115	
ĺ					1						٦	Hydrau		۱۱۵ ۲- ∠۱۱۱۸ ۱۱5 ا	v/∪∪ HZ
	1	l		1								-	Standard		
												1	Food grade Low temperati	ure to -25 °C	

* PVT max. 25 bar

2.6.3 **Spare Parts**

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with SST/HCT material version

- Diaphragm
- Valve balls
- Sealing set, complete

Scope of delivery with PVT material version

- Diaphragm
- Suction valve, complete
- Discharge valve, complete
- Valve balls
- Sealing set, complete

Spare parts kits for Hydro/ 4

Identity code 250130, 250190, 250250, 250350, 250400

Liquid end	Materials in contact with the medium		Order no.
FMH 400 - DN 25	PVT		1043763
	PVT	with valve	1023057
	SST		1040812
	SST	with valve	1040813
	HCT		1040860

Identity code 160210, 160300, 160400, 160550, 160625

Liquid end	Materials in contact with the medium		Order no.
FMH 625 - DN 25	PVT		1043775
	PVT	with valve	1040863
	SST		1040824
	SST	with valve	1040825
	HCT		1040861

Identity code 100330, 100480, 100635, 100880, 101000

Liquid end	Materials in contact with the medium		Order no.
FMH 1000 - DN 32	PVT		1043776
	PVT	with valve	1040866
	SST		1040826
	SST	with valve	1040827
	HCT		1040864

Identity code 0704650, 070670, 070890, 071230, 071400

Liquid end	Materials in contact with the medium		Order no.
FMH 1400 - DN 40	PVT		1043777
	PVT	with valve	1040869
	SST		1040828
	SST	with valve	1040829
	HCT		1040867

Metering Diaphragm PTFE/1.4404 for Hydro/ 4

Liquid end		Order no.
FMH 400	Identity code (SST) 250130, 250190, 250250, 250350, 250400	1040808
FMH 625	Identity code (SST) 160210, 160300, 160400, 160550, 160625	1040809
FMH 1000	Identity code (SST) 100330, 100480, 100635, 100880, 101000	1040810
FMH 1400	Identity code (SST) 0704650, 070670, 070890, 071230, 071400	1040811

Diaphragms PTFE/Hastelloy C Coated for Hydro/ 4

Liquid end		Order no.
FMH 400	Identity code (HCT) 250130, 250190, 250250, 250350, 250400	1040874
FMH 625	Identity code (HCT) 160210, 160300, 160400, 160550, 160625	1040875
FMH 1000	Identity code (HCT) 100330, 100480, 100635, 100880, 101000	1040876
FMH 1400	Identity code (HCT) 0704650, 070670, 070890, 071230, 071400	1040877

Base for Hydro hydraulic diaphragm metering pumps

P_PZ_0010_SW1

	Order no.
Base for Hydro/ 4, dimensions: 344 x 250 x 120 mm (LxWxH)	1051421

Process Metering Pumps

2.7 Hydraulic Diaphragm Metering Pump Makro/ 5

2.7.1

Hydraulic Diaphragm Metering Pump Makro/ 5

Excellent feed rates in the low pressure range

Capacity range of single pump: 450 - 6,108 l/h, 25 - 6 bar

1

The robust hydraulic diaphragm metering pump Makro/ 5 guarantees outstanding process reliability. Its modular construction offers extremely good flexibility and a large range of power end versions are available.

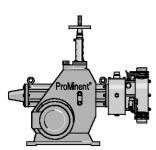
The Makro/ 5 hydraulic diaphragm metering pump (M5Ha) together with the Makro/ 5 diaphragm and plunger metering pumps form an integrated product range with stroke lengths of 20 and/or 50 mm. This covers the capacity range from 38 to 6,108 l/h at 320-4 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification. The Makro/ 5 product range is designed to comply with API 675 among others.

Your benefits

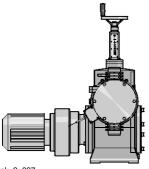
Excellent process safety and reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- Metering reproducibility is better than ± 1% within the 10-100% stroke length range under defined conditions and with correct installation.

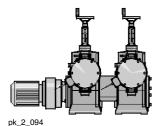
Excellent flexibility:

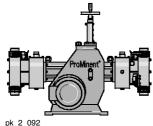

- The modular construction with single and double head versions permits a wide range of applications, with the double head designs being operated in push-pull mode
- It is possible to combine up to 4 metering units, even with different pump capacities, in multiple pump systems
- 5 different gear ratios are available
- Customised designs are available on request

Technical Details

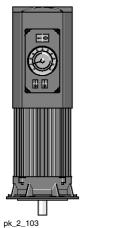

- Stroke length: 0 50 mm, Rod force: 10,000 N
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1% within the 10 100% stroke length range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: PVDF, PTFE+25% carbon, stainless steel 1.4571, special materials are available on request
- A wide range of power end versions is available: three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others

Field of application


- Oil and gas industry.
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips


pk_2_096 Makro/ 5 M5Ha

pk_2_097 Makro/ 5 M5Ha


Makro/ 5 externally mounted pump

pk_2_092 Makro/ 5 double head pump

Hydraulic Diaphragm Metering Pump Makro/ 5

Control of Makro/5 Hydraulic Diaphragm Metering Pumps Makro/ 5 stroke length controller

Variable speed motor with integrated frequency converter

Control drive consisting of an actuator with servomotor and integral microprocessor controller for stroke length adjustment via a standard signal. Actuating period approx. 100 sec for 100% stroke length, including 2 limit switches for min./max. position, IP 54 degree of protection. Electrical connection 230 V (±10%), 50/ 60 Hz, 40 W mechanical stroke length display fitted on the Makro/ 5 power end.

Special voltage/higher degrees of protection/explosion protection on request.

Standard signal current input 0/4-20 mA, corresponds to stroke length 0 - -100%; internal switch for manual /automatic operation, key switch for stroke adjustment in manual mode. Actual value output 0/4-20 mA for remote display.

Speed controllers with frequency converter (identity code specification Z)

The speed controller (complete) comprises a frequency converter and a variable speed motor (see also identity code specification R). The frequency converter is accommodated in an IP 55 rated protective housing with integral control unit and main switch, suitable for max. motor power 0.37/0.75/1.1 kW.

Externally controllable with 0/4-20 mA or 0-10 V corresponding to 0-50 (60) Hz output frequency.

Frequency Converters for Speed Control See page → 1-82

Stroke sensor with Namur signal

Mounting on the crank drive mechanism of the Makro/ 5 gearbox. For precise measurement of each metering stroke, comprising electronic cams and inductive proximity switches, switching signal according to Namur. In combination with electronic pre-selection meters suitable for batch metering or proportional metering in conjunction with proportional control.

Retrospective fitting only possible in the factory.

Approved for Ex safety operation with degree of protection EEx ia II C T6.

Technical Data

Type M5Ha	With 1500 rpm motor at 50 Hz			Wit	th 1800 r	pm moto	r at 60 Hz	Suction lift	Connection suction/	Shipping weight	Plunger Ø	
	Delivery rate at max. back pressure		•		max	Delivery c. back p	y rate at ressure	Max. stroke rate		discharge side	-	
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h	gph (US)	Strokes/ min	m WC	G-DN	kg	mm
250450	25	450	125.0	60	362	537	142	72	3.0	G 2-32	320	60
250562	25	562	125.0	75	362	671	177	89	3.0	G 2-32	320	60
250772	25	772	125.0	103	362	922	244	123	3.0	G 2-32	320	60
250997	25	997	125.0	133	362	1,191	315	159	3.0	G 2-32	320	60
251170	25	1,170	125.0	156	_	-	-	-	_	G 2-32	320	60
160616	16	616	171.2	60	232	736	194	72	3.0	G 2 1/4-40	320	70
160770	16	770	171.2	75	232	920	243	89	3.0	G 2 1/4-40	320	70
161058	16	1,058	171.2	103	232	1,264	334	123	3.0	G 2 1/4-40	320	70
161366	16	1,366	171.2	133	232	1,633	431	159	3.0	G 2 1/4-40	320	70
161602	16	1,602	171.2	156	_	-	-	-	3.0	G 2 1/4-40	320	70
120716	12	716	199.0	60	174	855	226	72	3.0	G 2 1/4-40	320	75
120895	12	895	199.0	75	174	1,069	282	89	3.0	G 2 1/4-40	320	75
121229	12	1,229	199.0	103	174	1,469	388	123	3.0	G 2 1/4-40	320	75
121588	12	1,588	199.0	133	174	1,898	501	159	3.0	G 2 1/4-40	320	75
121862	12	1,862	199.0	156	_	-	_	-	3.0	G 2 1/4-40	320	75
120919	12	919	255.3	60	174	1,098	290	72	3.0	G 2 1/4-40	320	85
121148	12	1,148	255.3	75	174	1,372	362	89	3.0	G 2 1/4-40	320	85
121577	12	1,577	255.3	103	174	1,885	498	123	3.0	G 2 1/4-40	320	85
122037	12	2,037	255.3	133	174	2,435	643	159	3.0	G 2 1/4-40	320	85
122389	12	2,389	255.3	156	_	2,856	754	-	3.0	G 2 1/4-40	320	85
101345	10	1,345	374.0	60	145	1,607	425	72	3.0	G 2 3/4-50	330	100
101680	10	1,680	374.0	75	145	2,008	530	89	3.0	G 2 3/4-50	330	100
102310	10	2,310	374.0	103	145	2,761	729	123	3.0	G 2 3/4-50	330	100
102980	10	2,980	374.0	133	145	3,562	941	159	3.0	G 2 3/4-50	330	100
103500	10	3,500	374.0	156	_	_	-	-	3.0	G 2 3/4-50	330	100
062305	6	2,305	641.0	60	87	2,755	728	72	3.0	flange-65*	330	130
062880	6	2,880	641.0	75	87	3,443	910	89	3.0	flange-65*	330	130
063960	6	3,960	641.0	103	87	4,734	1,251	123	3.0	flange-65*	330	130
065110	6	5,110	641.0	133	87	6,108	1,614	159	3.0	flange-65*	330	130
066000	6	6,000	641.0	156	-	-	-	-	3.0	flange-65*	330	130

Material Version PPT/PCT/TTT max. 10 bar

Materials in Contact With the Medium

			DN 32/DN5	50/DN65 plate va	alves	DN 40 plate valves			
	Dosing head	Suction/ pressure valve	Seals	Valve plates/valve springs	Valve seats		Seals	Valve plates	Valve seats
PPT	Polypropylene	Polypropylene	PTFE	Hast C.	PTFE	PPE	EPDM	Hast. C	PTFE
PCT	PVC	PVC	PTFE	Hast C.	PTFE	PCA	Viton®	Hast. C	PTFE
TTT	PTFE with carbon	PTFE with carbon	PTFE	Hast C.	PTFE	TTT	PTFE	Hast. C	PTFE
SST	Stainless steel material no. 1.4571/1.4404	Stainless steel material no. 1.4571/1.4404	PTFE	Hast C.	PTFE	SST	PTFE	Hast. C	PTFE

Patented multi-layer diaphragm, vacuum-packed Special designs available on request Viton® is a registered trademark of DuPont Dow Elastomers

^{*} SST version with G 2 1/2" thread

2.7.2

Identity Code Ordering System for M5Ha

Motor-driven metering pump M5Ha

М5На	Drive t	ype												
	Н	Main driv	e											
	Α	Add-on p	ower er	nd										
	D	Double n												
	В													
	Ь		uu-on p	-on power end										
		Type*												
		250450		160616		120716		120919		101345		062305		
		250562		160770		120895		121148		101680		062880		
		250772		161058		121229		121577		102310		063960		
		250997		161366		121588		122037		102980		065110		
		251170		161602		121862		122389		103500		066000		
			Liquid	end mat	terial									
			PC	IPVC	Cilai									
			PP	Polyprop	ovlene									
			SS	Stainless	-									
				1										
			TT	PTFE + :										
		Sealing material												
				Т	PTFE									
					Displa	cement b	ody							
					Т	Compos	ite diapł	ragm, PT	FE coat	ing, with	rupture	indicator		
						Liquid e	nd vers	ion						
						1		alve spring	as					
								ulic conn	-					
							0	Standard		ction				
							1	PVC unio						
							2	Union nu						
							3			and inser	τ			
							4	SS unior		dinsert				
								Version						
								0		oMinent [©]				
								2	withou	t ProMine	ent® logo	o, no fran	ne	
								Α	with Pr	oMinent [®]	logo, w	ith frame	, simple	X
								В	with Pr	oMinent [®]	logo, w	ith frame	duplex	1
								С		oMinent [®]				
								D		oMinent [©]				
								М	Modifie		logo, I	marine	, quaur	20107
								IVI						
										cal pow			- (\A/DO)	
									S			50/60 H		
									R			motor 4- _l		
									V (0)	Motor w	ith integ	r. freque	ncy con	verter
									L	3 ph. 23	0/400 V	50 Hz (E	Exe, Exd)
									Р	3 ph. 23	0/400 V	60 Hz (E	Exe, Exd)
									V (2)	Motor w	ith integ	r. freque	ncy con	verter (Exd)
									5	No moto	or, with	gearbox I	EC 100	
									6	No moto	or. with o	gearbox I	EC 112	
									0	No moto		•		
									-	Enclosi	_			
										0		Standard) ISO da	ase F
										1	,	rsion ATI	,	335 1
										2		rsion ATI		
										Α		oower en		
												sensor		
											0	No strol		
											1	With str	oke sen	sor (Namur)
												Stroke	length a	adjustment
												0		length adjustment, manual
												3		0-20 mA stroke controller
						1		1			1	4		4-20 mA stroke controller
												5		0-20 mA stroke controller
												6		4-20 mA stroke controller
													Applic	
													0	Standard
													3	Low temperature to -20 °C

^{*} Material version PC/PP/TT max. 10 bar

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	3 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	3 kW	With PTC, speed control range 1:5
V0	3 ph, IP 55	400 V ±10%	50/60 Hz	3 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	3.6 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	4 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExellT3	250-280 V/440-480 V	60 Hz	3.6 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	4 kW	With PTC, speed control range 1:5
V2	3 ph, II2GEExellCT4	400 V ±10%	50/60 Hz	4 kW	Ex-variable speed motor with integrated frequency converter

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.7 Hydraulic Diaphragm Metering Pump Makro/ 5

2.7.3 Spare Parts

The spare parts kits generally contain the consumable components for the liquid ends.

- 1 metering diaphragm
- 1 suction valve set
- 1 discharge valve set
- 1 seal set (O-rings, packing rings, valve seat, valve seat housings)

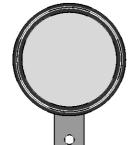
Spare Parts Kits for Makro/ 5 HMH

Identity code: 250450, 250562, 250772, 250997, 251170

Liquid end	Materials in contact with the medium		Order no.
FMH 60-50	S	with 2 valves cpl.	1008170
	S	without valves cpl.	1008169

Identity code: 160616, 160770, 161058, 161366, 161602, 120716, 120895, 121229, 121588, 121862, 120919, 121148, 121577, 122037, 122389

Liquid end	Materials in contact with the medium		Order no.
FMH 70/75/85-50	PPT		911904
	PCT		911902
	TTT		911906
	SST		911910
	SST	without valves cpl.	911909


Identity code: 101345, 101680, 102310, 102980, 103500

Liquid end	Materials in contact with the medium		Order no.
FMH 100-50	PP		1008246
	Р		1008247
	Т		1008248
	S	with valves cpl.	1008250
	S	without valves cpl.	1008249

Identity code: 062305, 062880, 063960, 065110, 066000

Liquid end	Materials in contact with the medium		Order no.
FMH 130-50	PP		1008251
	Р		1008252
	Т		1008253
	S	with valves cpl.	1008265
	S	without valves cpl.	1008264

Metering Diaphragms for Makro/ 5 HMH

Liquid end	Order no.
FMH 60/70/75/85-50	1007298
FMH 100/130-50	1007852

000

2-39

pk_2_024

2.8 Hydraulic Diaphragm Metering Pump Orlita® Evolution 1

2.8.1

Hydraulic Diaphragm Metering Pump Orlita® Evolution 1

Maximum process reliability and flexibility.

Capacity range of single pump: 3 - 355 l/h, 400 - 12 bar

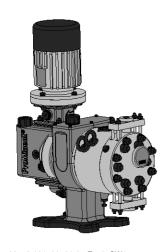
The Orlita® Evolution 1 meets the highest safety requirements as an extremely robust hydraulic diaphragm metering pump. It stands out, thanks to its PTFE multi-layer diaphragm with integral diaphragm rupture warning system and unique diaphragm position control. Its modular construction offers extremely good flexibility in terms of applications.

The Orlita® Evolution hydraulic diaphragm metering pump range of EF1a, EF2a, EF3a and EF4a form an integrated product range with stroke lengths of 15 to 40 mm. This covers the capacity range of 3 to 7,400 l/h at 400 – 10 bar. A wide range of drive versions is available, including some with ATEX certification for use in Zone 1 or Zone 2 areas at risk from explosion. The Orlita® Evolution product range is designed to comply with API 675.

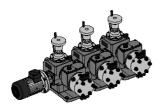
Your benefits

Maximum process reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- The new diaphragm position control protects against operating faults (e. g. no damage in the event of a blockage on the suction or discharge side)
- Metering reproducibility is better than ± 1% within the 10 100% stroke length range under defined conditions and with correct installation
- Continuous bleeding of the hydraulic oil chamber ensures reliable operation


Excellent flexibility

- The modular compact construction with single and multiple pump versions allows for a wide range of applications, also for multiple pump systems, whereas up to 5 metering units, even with different pump capacities, can be combined.
- 7 different gear ratios are available
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Customised designs are available on request


Technical Details

- Stroke length: 0 15 mm, Rod force: 2,300 N
- Stroke length adjustment: 0 100%
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1% within the 10 100% stroke length range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel 1.4404, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors also for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others

- Oil and gas industry
- Metering of reactants and catalysts in the chemical industry
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

68_52-101_00_01-0a-Evo1_SW1 Orlita® Evolution EF1a

P_PZ_0008_SW1 Orlita® Evolution triplex pump

2.8 Hydraulic Diaphragm Metering Pump Orlita[®] Evolution 1

Technical Data for EF1a Single Pump 50 Hz

Plunger Ø	Stroke volume	The	Theoretical pump capacity in I/h at strokes/min (50 Hz)							Efficiency at	Efficiency at	Standard type of valve
		73 [2]	97 [3]	116 [4]	145 [5]	165 [6]	181 [7]	201 [8]				
mm	ml/	I/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
10	1.18	5.2	6.9	8.2	10.2	11.7	12.8	14.2	293	0.62	0.62	DN 3
12	1.70	7.4	9.9	11.8	14.8	16.8	18.4	20.5	203	0.85	0.86	DN 3
14	2.31	10.1	13.4	16.1	20.1	22.9	25.1	27.8	149	0.62	0.83	DN 6
16	3.02	13.2	17.6	21.0	26.2	29.9	32.8	36.4	114	0.72	0.87	DN 6
19	4.25	18.6	24.8	29.6	37.0	42.1	46.2	51.3	81	0.87	0.92	DN 6
23	6.23	27.3	36.3	43.4	54.2	61.7	67.7	75.2	55	0.93	0.95	DN 10
27	8.59	37.6	50.0	59.8	74.7	85.0	93.3	103.6	40	0.95	0.96	DN 10
34	13.62	59.7	79.3	94.8	118.5	134.8	147.9	164.2	25	0.94	0.94	DN 10
40	18.85	82.6	109.7	131.2	164.0	186.6	204.7	227.3	18	0.94	0.94	DN 10

Technical Data for EF1a Single Pump 60 Hz

Plunger Ø	Stroke volume	Theoretic	cal pump ca	pacity in I/h	at strokes/m	Max. pressure	Efficiency at	Efficiency at	Standard type of valve	
		88 [2]	117 [3]	140 [4]	175 [5]	199 [6]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke							pressure	pressure	
10	1.18	6.2	8.3	9.9	12.4	14.1	293	0.62	0.62	DN 3
12	1.70	9.0	11.9	14.3	17.8	20.3	203	0.85	0.86	DN 3
14	2.31	12.2	16.2	19.4	24.2	27.6	149	0.62	0.83	DN 6
16	3.02	15.9	21.2	25.3	31.7	36.0	114	0.72	0.87	DN 6
19	4.25	22.5	29.9	35.7	44.7	50.8	81	0.87	0.92	DN 6
23	6.23	32.9	43.7	52.3	65.4	74.4	55	0.93	0.95	DN 10
27	8.59	45.3	60.3	72.1	90.2	102.5	40	0.95	0.96	DN 10
34	13.62	71.9	95.6	114.4	143.0	162.6	25	0.90	0.94	DN 10
40	18.85	99.5	132.3	158.3	197.9	225.1	18	0.94	0.94	DN 10

Note:

 $Abridged\ presentation\ of\ our\ complete\ product\ range.\ Other\ types\ on\ request.\ Plunger\ diameter\ 8-50\ mm.$

Materials in Contact With the Medium

Dosing head complete

Dosing head	Diaphragm retaining screw	Diaphragm
Stainless steel 1.4404	Stainless steel 1.4462	PTFE multi-layer diaphragm

Ball valve DN 3 - DN 10

	Suction/ pressure connector	Valve/head seal	Valve ball	Valve seat	Valve housing	Clamp ring
DN 3(double ball)	Stainless steel 1.4404	Stainless steel 1.4404	Al ₂ O ₃ ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4
DN 6 (double ball)	Stainless steel 1.4404	Stainless steel 1.4404	SiN ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4
DN 10 (single ball)	Stainless steel 1.4404	Stainless steel 1.4404	Al ₂ O ₃ ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4

Plate valve DN 15 - DN 20

	Suction/pressure connector	Valve/head seal	Valve plate	Valve seat	Valve housing	
DN 15/DN 20	Stainless steel 1.4404	Stainless steel 1.4571	Stainless steel 1.4462	Stainless steel 1.4404	Stainless steel 1.4404	

Further material versions and details available on request.

Hydraulic Diaphragm Metering Pump Orlita® **Evolution 2**

2.9.1

Hydraulic Diaphragm Metering Pump Orlita® Evolution 2

Maximum process reliability and flexibility.

Capacity range of single pump: 6 - 900 l/h, 400 - 10 bar

The Orlita® Evolution 2 meets the highest safety requirements as an extremely robust hydraulic diaphragm metering pump. It stands out, thanks to its PTFE multi-layer diaphragm with integral diaphragm rupture warning system and unique diaphragm position control.

The Orlita® Evolution hydraulic diaphragm metering pump range of EF1a, EF2a, EF3a and EF4a form an integrated product range with stroke lengths of 15 to 40 mm. This covers the capacity range of 3 to 7,400 l/h at 400 - 10 bar. A wide range of drive versions is available, including some with ATEX certification for use in Zone 1 or Zone 2 areas at risk from explosion. The Orlita® Evolution product range is designed to comply with API 675.

Your benefits

Maximum process reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- The new diaphragm position control protects against operating faults (e. g. no damage in the event of a blockage on the suction or discharge side)
- Metering reproducibility is better than ± 1% within the 10 100% stroke length range under defined conditions and with correct installation
- Continuous bleeding of the hydraulic oil chamber ensures reliable operation


Excellent flexibility:

- The modular compact construction with single and multiple pump versions allows for a wide range of applications, also for multiple pump systems, whereas up to 5 metering units, even with different pump capacities, can be combined.
- 7 different gear ratios are available
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Customised designs are available on request

Technical Details

- Stroke length: 0 15 mm, Rod force: 5,400 N
- Stroke length adjustment: 0 100%
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1% within the 10 100% stroke length range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel 1.4404, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors also for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others

- Oil and gas industry
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

68 52-101 00 01-0a-Evo2 SW1 Orlita® Evolution EF2a

P PZ 0008 SW1 Orlita® Evolution triplex pump

2.9 Hydraulic Diaphragm Metering Pump Orlita® **Evolution 2**

Technical Data for EF2a Single Pump 50 Hz

Plunger Ø	Stroke volume	Theo	Theoretical pump capacity in I/h at strokes/min (50 Hz						Max. pressure	Efficiency at	Efficiency at	Standard type of
		73 [2]	97 [3]	116 [4]	145 [5]	165 [6]	181 [7]	201 [8]				valve
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
13	1.99	8	11	13	17	19	21	24	400	0.80	0.80	DN 3
14	2.31	10	13	16	20	22	25	27	362	0.83	0.84	DN 6
18	3.82	16	22	26	33	37	41	46	203	0.85	0.86	DN 6
22	5.70	25	33	39	49	56	61	68	149	0.87	0.90	DN 10
25	7.36	32	42	51	64	72	80	88	114	0.91	0.93	DN 10
29	9.91	43	57	69	86	98	107	119	81	0.95	0.98	DN 10
35	14.43	63	84	100	125	142	156	174	55	0.93	0.95	DN 10
41	19.80	86	115	137	172	196	215	238	40	0.95	0.96	DN 15
52	31.86	139	185	221	277	315	346	384	25	0.97	0.98	DN 15
65	49.77	218	289	346	433	492	540	600	16	0.95	0.97	DN 20
80	75.40	330	438	524	655	746	818	909	10	0.98	0.98	DN 20

Technical Data for EF2a Single Pump 60 Hz

Plunger Ø	Stroke volume	Theoretic	Theoretical pump capacity in I/h at strokes/min (60 Hz)					Efficiency at	Efficiency at	Standard type of
		88 [2]	117 [3]	140 [4]	175 [5]	199 [6]				valve
mm	ml/	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke							pressure	pressure	
13	1.99	10	14	20	23	26	400	0.80	0.80	DN 3
14	2.31	12	16	24	27	30	362	0.83	0.84	DN 6
18	3.82	20	26	40	45	50	203	0.85	0.86	DN 6
22	5.70	30	40	59	68	74	149	0.87	0.90	DN 10
25	7.36	38	51	77	87	96	114	0.91	0.93	DN 10
29	9.91	52	69	83	104	118	81	0.95	0.98	DN 10
35	14.43	76	101	121	151	172	55	0.93	0.95	DN 10
41	19.80	104	139	166	207	236	40	0.95	0.96	DN 15
52	31.86	168	223	267	334	380	25	0.97	0.98	DN 15
65	49.77	262	349	418	522	594	16	0.95	0.97	DN 20
80	75.40	398	529	633	791	900	10	0.98	0.98	DN 20

Note:

Abridged presentation of our complete product range. Other types on request. Plunger diameter 11-80 mm.

Materials in Contact With the Medium

Dosing head complete

Dosing head	Diaphragm retaining screw	Diaphragm
Stainless steel 1.4404	Stainless steel 1.4462	PTFE multi-layer diaphragm

Ball valve DN 3 - DN 10

	Suction/ pressure connector	Valve/head seal	Valve ball	Valve seat	Valve housing	Clamp ring
DN 3 (double ball)	Stainless steel 1.4404	Stainless steel 1.4404	Al ₂ O ₃ ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4
DN 6 (double ball)	Stainless steel 1.4404	Stainless steel 1.4404	SiN ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4
DN 10 (double ball)	Stainless steel 1.4404	Stainless steel 1.4404	Al ₂ O ₃ ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4

Plate valve DN 15 - DN 20

	Suction/pressure connector	Valve/head seal	Valve plate	Valve seat	Valve housing
DN 15/DN 20	Stainless steel 1.4404	Stainless steel 1.4571	Stainless steel 1.4462	Stainless steel 1.4404	Stainless steel 1.4404

Further material versions and details available on request.

2.10 Hydraulic Diaphragm Metering Pump Orlita® **Evolution 3**

2.10.1

Hydraulic Diaphragm Metering Pump Orlita® Evolution 3

Maximum process reliability and flexibility.

Capacity range of single pump: 21 - 1,330 l/h, 400 - 18 bar

The Orlita® Evolution 3 meets the highest safety requirements as an extremely robust hydraulic diaphragm metering pump. It stands out, thanks to its PTFE multi-layer diaphragm with integral diaphragm rupture warning system and unique diaphragm position control.

The Orlita® Evolution hydraulic diaphragm metering pump range of EF1a, EF2a, EF3a and EF4a form an integrated product range with stroke lengths of 15 to 40 mm. This covers the capacity range of 3 to 7,400 l/h at 400 - 10 bar. A wide range of drive versions is available, including some with ATEX certification for use in Zone 1 or Zone 2 areas at risk from explosion. The Orlita® Evolution product range is designed to comply with API 675.

Your benefits

Maximum process reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- The new diaphragm layer control protects against impermissible operating statuses (e.g. no damage in the event of a blockage on the suction or discharge side)
- Continuous bleeding of the oil chamber ensures reliable operation

Excellent flexibility:

- The modular construction with single and multiple pump versions permits a wide range of applications. In multiple pump systems up to 5 metering units can be combined, including units with different pump capacities
- 7 different gear ratios are available; in single pumps the drive arrangement can be either vertical or horizontal
- Customised designs are available on request

Technical Details

- Stroke length: 0 25 mm, Rod force: 8,000 N
- Stroke length adjustment: 0 100%
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1% within the 10 100% stroke length range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel 1.4404, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors also for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others

- Oil and gas industry
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

P_ORL_063_SW1 Orlita® Evolution EF3a

P PZ 0008 SW1 Orlita® Evolution triplex pump

2.10 Hydraulic Diaphragm Metering Pump Orlita[®] Evolution 3

Technical Data for EF3a Single Pump 50 Hz

Plunger Ø	Stroke volume	The	Theoretical pump capacity in I/h at strokes/min (50 Hz)							Efficiency at	Efficiency at	Standard type of valve
		73 [2]	97 [3]	116 [4]	145 [5]	165 [6]	181 [7]	201 [8]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
16	5.03	21	29	34	43	49	54	60	400	0.72	0.84	DN 6
17	5.67	24	32	39	49	56	61	68	352	0.75	0.86	DN 6
18	6.36	27	36	44	55	62	69	76	314	0.77	0.87	DN 6
22	9.50	41	55	66	82	93	103	114	210	0.86	0.92	DN 6
25	12.27	53	71	85	106	121	133	148	163	0.86	0.93	DN 10
30	17.67	76	102	122	153	174	192	213	113	0.90	0.93	DN 10
36	25.45	110	147	177	221	251	276	307	78	0.92	0.94	DN 15
42	34.64	150	200	241	301	342	376	418	57	0.93	0.94	DN 15
50	49.09	213	284	341	427	485	533	593	41	0.94	0.95	DN 25
60	70.69	307	409	491	614	698	768	854	27	0.95	0.96	DN 25
70	96.21	418	558	669	837	951	1,046	1,162	21	0.96	0.97	DN 25
75	110.45	480	640	768	960	1,091	1,201	1,334	17	0.97	0.98	DN 25

Technical Data for EF3a Single Pump 60 Hz

Plunger Ø	Stroke volume	Theoretic	cal pump ca _l	pacity in I/h	at strokes/m	Max. pressure	Efficiency at	Efficiency at	Standard type of valve	
		88 [2]	117 [3]	140 [4]	175 [5]	199 [6]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke							pressure	pressure	
16	5.03	26	35	42	52	59	400	0.72	0.84	DN 6
17	5.67	29	39	47	59	67	352	0.75	0.86	DN 6
18	6.36	33	44	53	66	75	314	0.77	0.87	DN 6
22	9.50	49	66	79	99	113	210	0.86	0.92	DN 6
25	12.27	64	85	103	128	146	163	0.86	0.93	DN 10
30	17.67	92	123	148	185	210	113	0.90	0.93	DN 10
36	25.45	133	178	213	267	303	78	0.92	0.94	DN 15
42	34.64	181	242	290	363	413	57	0.93	0.94	DN 15
50	49.09	257	343	412	515	585	41	0.94	0.95	DN 25
60	70.69	371	494	593	742	843	27	0.95	0.96	DN 25
70	96.21	505	673	808	1,010	1,147	21	0.96	0.97	DN 25
75	110.45	579	773	927	1,159	1,317	17	0.97	0.98	DN 25

Important note:

Abridged presentation of our complete product range. Other types on request

Materials in Contact With the Medium

Dosing head complete

Dosing head	Diaphragm retaining screw	Diaphragm
Stainless steel 1.4404	Stainless steel 1.4462	PTFE multi-layer diaphragm

Ball valve DN 6 - DN 10

	Suction/pressure connector	Valve/head seal	Valve ball	Valve seat	Valve housing	Clamp ring
DN 6 (double ball)	Stainless steel 1.4404	Stainless steel 1.4404	SIN	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4
DN 10 (single ball)	Stainless steel 1.4404	Stainless steel 1.4404	Al ₂ O ₃ ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4

Plate valve DN 15 - DN 25

	Suction/pressure connector	Valve/head seal	Valve plate	Valve seat	Valve housing
DN 15/DN 25	Stainless steel 1.4404	Stainless steel 1.4571	Stainless steel 1.4462	Stainless steel 1.4404	Stainless steel 1.4404

Further material versions and details available on request.

2.11 Hydraulic Diaphragm Metering Pump Orlita® Evolution 4

2.11.1

Hydraulic Diaphragm Metering Pump Orlita® Evolution 4

Maximum process reliability and flexibility.

Capacity range of single pump: 55 - 7,400 l/h, 400 - 10 bar

The Orlita® Evolution 4 meets the highest safety requirements as an extremely robust hydraulic diaphragm metering pump. It stands out, thanks to its PTFE multi-layer diaphragm with integral diaphragm rupture warning system and unique diaphragm position control.

The Orlita® Evolution hydraulic diaphragm metering pump range of EF1a, EF2a, EF3a and EF4a form an integrated product range with stroke lengths of 15 to 40 mm. This covers the capacity range of 3 to 7,400 l/h at 400 – 10 bar. A wide range of drive versions is available, including some with ATEX certification for use in Zone 1 or Zone 2 areas at risk from explosion. The Orlita® Evolution product range is designed to comply with API 675.

Your benefits

Maximum process reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- The new diaphragm position control protects against operating faults (e. g. no damage in the event of a blockage on the suction or discharge side)
- Metering reproducibility is better than ± 1% within the 10 100% stroke length range under defined conditions and with correct installation
- Continuous bleeding of the hydraulic oil chamber ensures reliable operation

Excellent flexibility:

- The modular compact construction with single and multiple pump versions allows for a wide range of applications, also for multiple pump systems, whereas up to 5 metering units, even with different pump capacities, can be combined.
- 7 different gear ratios are available
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Customised designs are available on request

Technical Details

- Stroke length: 0 40 mm, Rod force: 15,700 N
- Stroke length adjustment: 0 100%
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1% within the 10 100% stroke length range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel 1.4404, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors also for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others

- Oil and gas industry
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

68_54-101_00_03-0a-Evo4_SW1
Orlita® Evolution EF4a

P_PZ_0008_SW1
Orlita® Evolution triplex pump

2.11 Hydraulic Diaphragm Metering Pump Orlita® Evolution 4

Technical Data for EF4a Single Pump 50 Hz

Plunger Ø	Stroke volume	The	Theoretical pump capacity in I/h at strokes/min (50 Hz)							Efficiency at	Efficiency at	Standard type of valve
		73 [2]	97 [3]	116 [4]	145 [5]	165 [6]	181 [7]	201 [8]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
20	12.57	55	73	87	109	124	136	151	400	0.71	0.84	DN 15
25	19.63	85	114	136	170	194	213	236	320	0.72	0.85	DN 15
28	24.63	107	143	171	214	243	267	297	275	0.72	0.85	DN 15
30	28.27	123	164	196	245	279	307	340	222	0.73	0.86	DN 20
40	50.27	220	292	349	437	497	545	606	125	0.88	0.91	DN 25
50	78.54	344	457	546	683	777	852	947	80	0.93	0.94	DN 25
60	113.10	495	658	787	983	1,119	1,228	1,363	56	0.94	0.95	DN 32
70	153.94	674	895	1,071	1,339	1,524	1,671	1,856	41	0.95	0.96	DN 32
90	254.47	1,114	1,481	1,771	2,213	2,519	2,763	3,068	25	0.96	0.97	DN 40
110	380.13	1,664	2,212	2,645	3,307	3,763	4,128	4,584	17	0.98	0.98	DN 65
140	615.75	2,696	3,583	4,285	5,357	6,095	6,687	7,425	10	0.99	0.99	DN 65

Technical Data for EF4a Single Pump 60 Hz

Plunger Ø	Stroke volume	Theoretic	Theoretical pump capacity in I/h at strokes/min (60 Hz)				Max. pressure	Efficiency at	Efficiency at	Standard type of valve
		88 [2]	117 [3]	140 [4]	175 [5]	199 [6]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke							pressure	pressure	
20	12.57	66	88	105	131	150	400	0.71	0.84	DN 15
25	19.63	103	137	164	206	234	320	0.72	0.85	DN 15
28	24.63	98	130	156	195	221	275	0.72	0.85	DN 15
30	28.27	149	198	237	296	337	222	0.73	0.86	DN 20
40	50.27	265	352	422	527	600	125	0.88	0.91	DN 25
50	78.54	414	551	659	824	937	80	0.93	0.94	DN 25
60	113.10	597	793	950	1,187	1,350	56	0.94	0.95	DN 32
70	153.94	812	1,080	1,293	1,616	1,838	41	0.95	0.96	DN 32
90	254.47	1,343	1,786	2,137	2,671	3,038	25	0.96	0.97	DN 40
110	380.13	2,007	2,668	3,193	3,991	4,538	17	0.98	0.98	DN 65
140	615.75	3,251	4,322	5,172	6,465	7,352	10	0.99	0.99	DN 65

Important note:

Abridged presentation of our complete product range. Other types on request

Diaphragm

Materials in Contact With the Medium

Dosing head complete

Diaphragm retaining screw

Dosing head

Stainless steel 1	.4404 Stainle	ss steel 1.4462	PTFE mul	ti-layer diaphragm	
	Plate va	lve			
	Suction/pressure connector	Valve/head seal	Valve plate	Valve seat	Valve housing
DN 15 - DN 65	Stainless steel 1.4404	Stainless steel 1.4571	Stainless steel 1.4462	Stainless steel 1.4404	Stainless steel 1.4404

Further material versions and details available on request.

2.12.1

Hydraulic Diaphragm Metering Pump Orlita® MF

Reliable capacity even at high pressure

Capacity range of single pump: 0 - 13,000 l/h, 700 - 6 bar

The hydraulic diaphragm metering pump Orlita® MF offers reliable capacities even under high pressure and has a modular construction, therefore has versatile uses. Thanks to its modular design, this pump is tailored to meet your requirements even at very high pump capacities.

ORLITA® MF hydraulic diaphragm metering pumps (MFS 18 to MFS 1400) with a stroke length of 15 to 60 mm provide a capacity ranging from 0 to 13,000 l/h at 700 – 6 bar. A wide range of drive versions is available, including some for use in Zone 1 or Zone 2 areas at risk from explosion with ATEX certification. The Orlita® MF product range is designed to comply with API 675. Its modular construction permits the free combination of drives, power ends and dosing heads, producing a pump for a range of different feed rates and media operating at different working pressures.

Your benefits

Excellent process safety and reliability:

- PTFE double diaphragm with integrated diaphragm rupture warning system ensures precise and lowwear operation despite high pressures
- The product chamber is hermetically separated from the hydraulic part
- Integrated hydraulic relief valve and automatic bleed valve for the hydraulic chamber
- Wear-free, valveless enforced anti-cavitation of the hydraulic leakage guarantees optimum dosing precision
- Cone valves for use as suction and/or discharge valves with minimal wear, good self-cleaning and low pressure loss (NPSHR)

Excellent flexibility:

- The modular construction allows a wide range of uses. In multiple pump systems it is possible to combine up to 6 metering units, even with different pump capacities. In single pumps the drive arrangement may be either vertical or horizontal.
- 10 different gear ratios are available
- Temperature range -40 to +150 °C
- Customised designs are available on request

Technical Details

- MfS 18 (MF1a) Stroke length: 0-15 mm, Rod force: 1,750 N
- MfS 35 (MF2a) Stroke length: 0-20 mm, Rod force: 3,500 N
- MfS 80 (MF3a) Stroke length: 0-20 mm, Rod force: 14,000 N
- MfS 180 (MF4a) Stroke length: 0-40 mm, Rod force: 18,000 N
- MfS 600 (MF5a) Stroke length: 0-40 mm, Rod force: 40,000 N
- MfS 1400 (MF6a) Stroke length: 0-60 mm, Rod force: 60,000 N
- Stroke length adjustment range: 0 100% in operation and idle
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 0.5 % within the 10 100% stroke length range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Temperature range 40 °C to + 150 °C
- Suction lift up to 8 m
- Design in compliance with API 675 among others

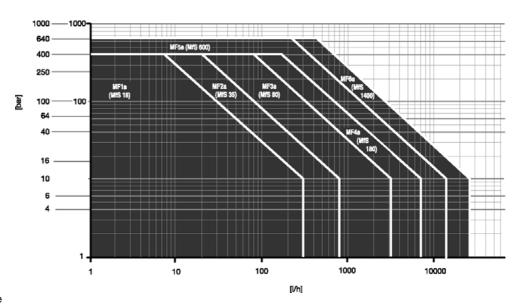
- Oil/ gas production (onshore/offshore)
- Refineries
- Chemical/Petrochemical industry
- Pharmaceuticals & cosmetics
- Food production
- Packaging industry (bottling pumps)

P_ORL_050_SW1 Orlita® MFS 18/12

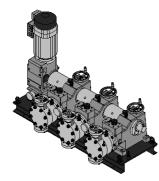
P_ORL_051_SW1 Orlita® MFS 35/30

P_ORL_052_SW1 Orlita® MFS 80/40

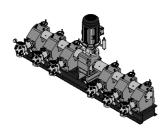
P_ORL_053_SW1 Orlita® MFS 180/60



P_ORL_054_SW1 Orlita® MFS 600b/81


P_ORL_055_SW1 Orlita® MFS 1400/46

Pressure [bar] depending on the metering volume [l/h] at 50 Hz


Triplex Metering Pumps

P ORL 056 SW1 Orlita® MF3S 180/90-90-90 triplex pump

With triplex metering pumps, the pressure stroke of each liquid end occurs through 120° of crank travel. This results in a metering flow free of pulsation without the use of elaborate pulsation dampers. This design of process diaphragm pump is preferred in the chemical and petrochemical industries.

Multiplexed Metering Pumps

P_ORL_057_SW1 Orlita® MF3S 1400/50 multiple pump

The Orlita® MF range's modular construction permits a variable combination of drives, motors and liquid ends e.g. quadruple MF metering pumps with central drive.

2.12 Hydraulic Diaphragm Metering Pumps Orlita® MF

P_ORL_058_SW1 Orlita® MFS 18 with 1-phase control drive 115/230 V

P_ORL_059_SW1 Orlita® MFS 35 with 1-phase control drive 115/230 V vertical

P_ORL_060_SW1
Orlita® MFS 180 with 3-phase control drive

P_ORL_061_SW1
Orlita® MFS 35/12-12-12 with control drives

P_ORL_062_SW1 Orlita® MFS 18/7 with Varicon

Actuation of ORLITA® MF, MH, PS, DR

Control drive consisting of an actuator with servo motor and integral servo controller for stroke length adjustment via a standard signal. Standard signal current input 0/4 - 20 mA, corresponds to stroke length 0 - 100%, switch for manual/automatic operation; key switch for stroke adjustment in manual mode, mechanical status display of actual stroke length value output 0/4 - 20 mA for remote display. Control drives can also be designed with bus systems, like HART, PROFIBUS, Fieldbus Foundation ...

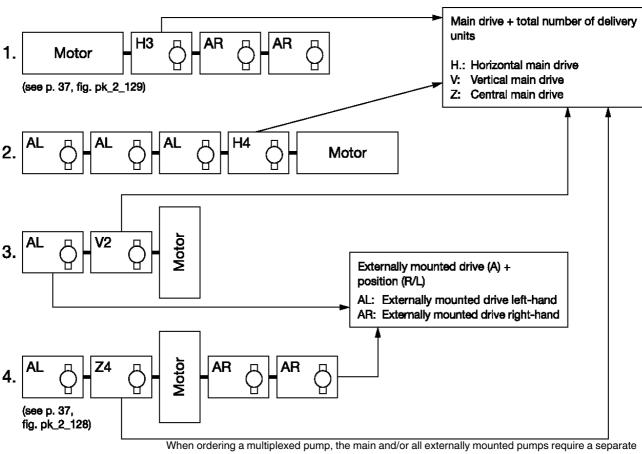
Variable speed motors with integrated frequency converter (identity code specification V)

Power supply 1 ph 230 V, 50/60 Hz (up to 3 kW). Externally controllable with 0/4 - 20 mA.

The following functions are integrated in the terminal box cover:

- Start/stop switch
- Switch for manual/external operation
- Potentiometer for speed control in manual mode

Speed controllers with frequency converter (identity code specification Z)


The frequency converter is accommodated in an IP 55 rated protective housing with integral control unit and main switch, suitable for max. 0.37/0.75 kW motor capacity.

Externally controllable with 0/4 - 20 mA or 0 - 10 V corresponding to 0 - 50 (60) Hz output frequency.

Integrated control unit with versatile functions, such as switching between external/internal control; frequency input using arrow keys with internal control, multilingual fault message display etc. and motor temperature monitoring (thermistor protection).

The speed controller assembly consists of a frequency converter and a variable speed motor.

Type of drive

Identity code.

For example a triplex pumpe (1.): MF_aH3.....

MF_aAR..... MF_aAR.....

Materials in Contact With the Medium

	Liquid end	Suction/discharge valve housing	Valve seals	Valve	Valve seat	Range
S1 (DIN)	1.4404	None	1.4571	Ceramic	1.4404	DN 3
S1 (ANSI)	A 316 L	N/A	A 316 Ti	Ceramic	A 316 L	
S1 (DIN)	1.4404	1.4404	1.4571	1.4462	1.4462	≥ DN6
S1 (ANSI)	A 316 L	A 316 L	A 316 Ti	Duplex SS	Duplex SS	
S2 (DIN)	1.4462	1.4462	1.4571	1.4462	1.4462	≥ DN6
S2 (ANSI)	Duplex SS	Duplex SS	A 316 Ti	Duplex SS	Duplex SS	
S3 (DIN)	1.4539	1.4539	2.4610	1.4539	1.4539	≥ DN6
S3 (ANSI)	A904L	A904L	Hastelloy C-4	A904L	A904L	

Motor Data

Α	50 Hz	3 ph. 230/400 V	3 ph. 500 V	3 ph. 380/660 V
		3 ph. 400/690 V	3 ph. 415 V	
B (adjustable 1:5)	50 Hz	3 ph. 230/400 V	3 ph. 500 V	3 ph. 380/660 V
		3 ph. 400/690 V	3 ph. 415 V	
Н	60 Hz	3 ph. 220/380 V	3 ph. 400 V	
K (adjustable 1:5)	60 Hz	3 ph. 220/380 V	3 ph. 400 V	

2.12.2

Orlita® MFS 18 (MF1a) Hydraulic Diaphragm Metering Pumps

Technical Data MfS 18 Single Pump 50 Hz

Plunger Ø	Stroke volume	Pump o	apacity	Q _{th} in I/I		mp head ode char			Max. pressure	Efficiency at	Efficiency at	Standard type of valve
		45 [3]	58 [4]	73 [5]	91 [6]	112 [7]	145 [8]	207 [9]				
mm	ml/ stroke	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100% pressure	50% pressure	
7	0.58	1.5	2.0	2.5	3.1	3.8	5.0	7.1	400	0.50	0.70	DK DN 3
8	0.75	2.0	2.6	3.2	4.1	5.0	6.5	9.3	348	0.55	0.72	DK DN 3
10	1.18	3.2	4.1	5.1	6.4	7.8	10.2	14.6	222	0.67	0.79	Ke DN 6
11	1.43	3.8	4.9	6.2	7.7	9.5	12.4	17.7	184	0.67	0.79	Ke DN 6
12	1.70	4.6	5.9	7.3	9.2	11.3	14.7	21.0	154	0.84	0.88	Ke DN 6
14	2.31	6.2	8.0	10.0	12.5	15.4	20.0	28.7	113	0.85	0.88	Ke DN 6
16	3.02	8.2	10.5	13.1	16.4	20.1	26.2	37.4	87	0.86	0.88	Ke DN 6
18	3.82	10.3	13.2	16.6	20.7	25.5	33.2	47.4	68	0.87	0.88	Ke DN 6
20	4.71	12.8	16.4	20.5	25.6	31.5	41.0	58.5	55	0.88	0.89	Ke DN 6
22	5.70	15.5	19.8	24.8	31.0	38.1	49.6	70.8	46	0.88	0.89	Ke DN 10/6
25	7.36	20.0	25.6	32.0	40.0	49.2	64.0	91.5	35	0.89	0.89	Ke DN 10
27	8.59	23.3	29.8	37.3	46.7	57.4	74.7	106.7	30	0.89	0.89	Ke DN 10
29	9.91	26.9	34.4	43.1	53.8	66.3	86.2	123.1	26	0.89	0.89	Ke DN 10
30	10.60	28.8	36.9	46.1	57.6	70.9	92.2	131.7	24	0.89	0.89	Ke DN 10
36	15.27	41.5	53.1	66.4	83.0	102.1	132.8	189.7	17	0.89	0.89	Ke DN 16
40	18.85	51.2	65.6	82.0	102.4	126.1	163.9	234.2	13	0.89	0.89	Ke DN 16
44	22.81	62.0	79.3	99.2	124.0	152.6	198.4	283.4	11	0.89	0.90	Ke DN 16
50	29.45	80.0	102.4	128.1	160.1	197.1	256.2	366.0	8	0.89	0.90	Ke DN 16

Technical Data MfS 18 Single Pump 60 Hz

Plunger Ø	Stroke volume	Pump	capacity	' Q _{th} in I/I		-	at H/min acteristic		Max. pressure	Efficiency at	Efficiency at	Standard type of valve
		44 [2]	55 [3]	70 [4]	88 [5]	110 [6]	135 [7]	176 [8]				
mm	ml/	I/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
7	0.58	1.5	1.9	2.4	3.0	3.8	4.6	6.1	400	0.50	0.70	DK DN 3
8	0.75	1.9	2.4	3.1	3.9	4.9	6.1	7.9	348	0.55	0.72	DK DN 3
10	1.18	3.1	3.8	4.9	6.2	7.7	9.5	12.4	222	0.67	0.79	Ke DN 6
11	1.43	3.7	4.7	6.0	7.5	9.4	11.5	15.0	184	0.67	0.79	Ke DN 6
12	1.70	4.4	5.6	7.1	8.9	11.2	13.7	17.9	154	0.84	0.88	Ke DN 6
14	2.31	6.1	7.6	9.7	12.1	15.2	18.7	24.3	113	0.85	0.88	Ke DN 6
16	3.02	7.9	9.9	12.7	15.9	19.9	24.5	31.8	87	0.86	0.88	Ke DN 6
18	3.82	10.0	12.6	16.1	20.1	25.1	31.0	40.3	68	0.87	0.88	Ke DN 6
20	4.71	12.4	15.5	19.9	24.8	31.1	38.2	49.7	55	0.88	0.89	Ke DN 6
22	5.70	15.0	18.8	24.0	30.1	37.6	46.3	60.2	46	0.88	0.89	Ke DN 10/6
25	7.36	19.4	24.3	31.1	38.8	48.6	59.8	77.7	35	0.89	0.89	Ke DN 10
27	8.59	22.6	28.3	36.2	45.3	56.6	69.7	90.6	30	0.89	0.89	Ke DN 10
29	9.91	26.1	32.7	41.8	52.3	65.3	80.4	104.6	26	0.89	0.89	Ke DN 10
30	10.60	27.9	34.9	44.7	55.9	69.9	86.1	111.9	24	0.89	0.89	Ke DN 10
36	15.27	40.3	50.3	64.4	80.6	100.7	124.0	161.2	17	0.89	0.89	Ke DN 16
40	18.85	49.7	62.2	79.6	99.5	124.4	153.1	199.0	13	0.89	0.89	Ke DN 16
44	22.81	60.2	75.2	96.3	120.1	150.5	185.2	240.8	11	0.89	0.90	Ke DN 16
50	29.45	77.7	97.1	124.4	155.5	194.3	239.2	311.0	8	0.89	0.90	Ke DN 16

DK Double ball valve, Ke Conical valve

Abridged presentation of our complete product range. Other types on request Important note:

Allow for a minimum 10% power reserve when designing in accordance with API

All hydraulic performance data is based on water at 20 °C

Identity Code Ordering System

Orlita® MFS18 (MF1a) hydraulic diaphragm metering pump

MF1a	Drive t																	
	V1		rive vert															
	Z1		rive cen															
	AL			eft-hand														
	AR			ight-han	ıd													
	М	Modifie																
			er diam	eter	044	4.4		0.1.0	10		000	00		000	00		40	40
		007	7 mm		011	11 mm		016	16 mm		022	22 mm		029	29 mm		40	40 mm
		800	8 mm		012	12 mm		018	18 mm		025	25 mm		030	30 mm		44 50	44 mm
		010	10 mm		014	14 mm		020	20 mm		027	27 mm		036	36 mm	0	50	50 mm
				rate 50			4	E0 (70	\ Ctualca	/main	6	01/11/	O) Chuale	/min		145 (176)	Ctral	saa/main
			2		okes/mi strokes		4 5) Strokes) Strokes		6 7		0) Strok 35) Strok		8	145 (176) 207 (-) St		
			٥	, ,				•	e mater		,	112 (10	oo) onor	(65/111111	9	207 (-) 31	IOKES	/111III1
				S1		ss steel				iais)								
				01		erature	•		,									
					0		to 80 °0		ululli	2	-40 °C	to 60 °C	2		4	10 °C to	150 °	С
					1		to 60 °C			3		to 115 °			•	10 0 10	.00	
							cer for											
						0			er diaph	raam								
						1		-	er diaph	-	ith press	sure gau	ige					
								end ve										
							0	Standa						2	Standa	rd double	valve	
							1	Standa	ard with	spring				3	Standa	rd double	valve	with spring
								Hydra	ulic con	nectio	1 suctio	n side						
								G	Thread	DIN/IS	0			Α	Flange	ANSI		
								N	Thread	NPT/A	NSI			D	Flange	DIN/ISO		
									Hydra			n discha	arge sid	de				
									G		I DIN/IS			Α	Flange	ANSI		
									N	Thread	I NPT/A	NSI		D	Flange	DIN/ISO		
										Versio								
										0	no feat							
										1		end hea	-					
										2		end poli						
										3	-	al paint fi						
											A	Conne	ctor ard volta	ao 50 H	l-z			
											В				ız Iz adjusta	ahle		
											Н		ard volta	-	-	abic		
											ĸ			-	iz Iz adjusta	able		
											0		ally mou	-	-	2010		
											1		t motor v		•			
											2				MA flang	е		
																/ explosi	on pr	otection
												0	IP 55		,		55 E	
												1	IP 56			D IF	56 E	Exn
												Α	IP 55 E	Exn		E IF	56 E	Exe
												В	IP 55 E	Exe		F IF	56 E	Exde
													Electri	ical opt				
													0	no opt	ions			
													1		sensor			
																adjustme	ent	
														0	manua		. –	
														1		mA withou		
1														2		mA Ex Zo		
														3		mA Ex Zo		- # - I
														4		mA withou		
														5		mA Ex Zo		
				1	1			Ī						6		mA Ex Zo		
1				1	1			Ī						1	_	nmental		
															0	-20 °C to		
				1	1			Ī						1	1	-40 °C to		•
				1	1			Ī						1	2	0 °C to 5		
																Approva		
																	E	-
															1		PI 67	
																	DMA	
																-	TEX	ADL 675
				1	1			Ī						1	1			API 675
																5 V	υMΑ	/ ATEX

^{*}For other pump configurations see Type of drive page \rightarrow 2-51

^{**} Modified version (M) is possible for each ID character of the identity code.

2.12 Hydraulic Diaphragm Metering Pumps Orlita® MF

2.12.3

Orlita® MFS 35 (MF2a) Hydraulic Diaphragm Metering Pumps

Technical Data MfS 35 Single Pump 50 Hz

Plunger Ø	Stroke volume		Pump c		•••	h per pur ode char	-	at H/min c 3 to 9]:	Max. pressure	Efficiency at	Efficiency at	Standard type of valve
		45 [3]	58 [4]	73 [5]	91 [6]	112 [7]	145 [8]	207 [9]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
7	0.77	2.0	2.6	3.3	4.1	5.1	6.7	9.5	400	0.50	0.70	DK DN 3
8	1.01	2.7	3.5	4.3	5.4	6.7	8.7	12.4	400	0.50	0.70	DK DN 3
10	1.57	4.2	5.4	6.8	8.5	10.5	13.6	19.5	400	0.50	0.70	Ke DN 6
11	1.90	5.1	6.6	8.2	10.3	12.7	16.5	23.6	368	0.79	0.85	Ke DN 6
12	2.26	6.1	7.8	9.8	12.3	15.1	19.6	28.1	309	0.79	0.85	Ke DN 6
14	3.08	8.3	10.7	13.3	16.7	20.6	26.7	38.2	227	0.81	0.85	Ke DN 6
16	4.02	10.9	13.9	17.4	21.8	26.9	34.9	49.9	174	0.83	0.86	Ke DN 6
18	5.09	13.8	17.7	22.1	27.6	34.0	44.2	63.2	137	0.84	0.87	Ke DN 6
20	6.28	17.0	21.8	27.3	34.1	42.0	54.6	78.0	111	0.86	0.88	Ke DN 6
22	7.60	20.6	26.4	33.0	41.3	50.8	66.1	94.4	92	0.86	0.88	Ke DN 10/6
25	9.82	26.6	34.1	42.7	53.3	65.7	85.4	122.0	71	0.87	0.88	Ke DN 10
27	11.45	31.1	39.8	49.8	62.2	76.6	99.6	142.3	61	0.87	0.88	Ke DN 10
30	14.14	38.4	49.2	61.5	76.8	94.6	122.9	175.7	49	0.88	0.89	Ke DN 10
36	20.36	55.3	70.8	88.5	110.6	136.2	177.1	253.0	34	0.88	0.89	Ke DN 16
40	25.13	68.3	87.4	109.3	136.6	168.2	218.6	312.3	27	0.89	0.89	Ke DN 16
44	30.41	82.6	105.8	132.2	165.3	203.5	264.5	377.9	23	0.89	0.89	Ke DN 16
50	39.27	106.7	136.6	170.8	213.5	262.8	341.6	488.0	17	0.89	0.89	Ke DN 16
60	56.55	153.7	196.7	245.9	307.4	378.4	491.9	702.8	12	0.89	0.90	Ke DN 16/25
65	66.37	180.4	230.9	288.6	360.8	444.1	577.3	824.8	10	0.89	0.90	Ke DN 16/25
80	100.53	273.3	349.8	437.3	546.6	672.7	874.6	1,249.4	6	0.89	0.90	Ke DN 25

Technical Data MfS 35 Single Pump 60 Hz

Plunger	Stroke		Pump c	apacity	Q _{th} in I/	h per pur	np head	at H/min	Max.	Efficiency	Efficiency	Standard
Ø	volume			[lo	dentity o	ode char	acteristic	c 2 to 8]:	pressure	at	at	type of valve
		44 [2]	55 [3]	70 [4]	88 [5]	110 [6]	135 [7]	176 [8]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
7	0.77	2.0	2.5	3.2	4.0	5.0	6.2	8.1	400	0.50	0.70	DK DN 3
8	1.01	2.6	3.3	4.2	5.3	6.6	8.1	10.6	400	0.50	0.70	DK DN 3
10	1.57	4.1	5.1	6.6	8.2	10.3	12.7	16.5	400	0.50	0.70	Ke DN 6
11	1.90	5.0	6.2	8.0	10.0	12.5	15.4	20.0	368	0.79	0.85	Ke DN 6
12	2.26	5.9	7.4	9.5	11.9	14.9	18.3	23.8	309	0.79	0.85	Ke DN 6
14	3.08	8.1	10.1	13.0	16.2	20.3	25.0	32.5	227	0.81	0.85	Ke DN 6
16	4.02	10.6	13.2	16.9	21.2	26.5	32.6	42.4	174	0.83	0.86	Ke DN 6
18	5.09	13.4	16.7	21.5	26.8	33.5	41.3	53.7	137	0.84	0.87	Ke DN 6
20	6.28	16.5	20.7	26.5	33.1	41.4	51.0	66.3	111	0.86	0.88	Ke DN 6
22	7.60	20.0	25.0	32.1	40.1	50.1	61.7	80.2	92	0.86	0.88	Ke DN 10/6
25	9.82	25.9	32.4	41.4	51.8	64.8	79.7	103.6	71	0.87	0.88	Ke DN 10
27	11.45	30.2	37.7	48.3	60.4	75.5	93.0	120.9	61	0.87	0.88	Ke DN 10
30	14.14	37.3	46.6	59.7	74.6	93.3	114.8	149.2	49	0.88	0.89	Ke DN 10
36	20.36	53.7	67.1	85.9	107.4	134.3	165.3	214.9	34	0.88	0.89	Ke DN 16
40	25.13	66.3	82.9	106.1	132.7	165.8	204.1	265.4	27	0.89	0.89	Ke DN 16
44	30.41	80.2	100.3	128.4	160.5	200.7	247.0	321.1	23	0.89	0.89	Ke DN 16
50	39.27	103.6	129.5	165.8	207.3	259.1	318.9	414.6	17	0.89	0.89	Ke DN 16
60	56.55	149.2	186.6	238.8	298.5	373.2	459.3	597.1	12	0.89	0.90	Ke DN 16/25
65	66.37	175.2	219.0	280.3	350.4	438.0	539.1	700.8	10	0.89	0.90	Ke DN 16/25
80	100.53	265.4	331.7	424.6	530.8	663.5	816.6	1,061.6	6	0.89	0.90	Ke DN 25

DK Double ball valve, Ke Conical valve

Important note: Abridged presentation of our complete product range. Other types on request

Allow for a minimum 10% power reserve when designing in accordance with API

All hydraulic performance data is based on water at 20 °C

2.12 Hydraulic Diaphragm Metering Pumps Orlita® MF

Identity Code Ordering System

Orlita® MFS35 (MF2a) hydraulic diaphragm metering pump

Drive	tvne																
V1		rive vert	ical *					AR	Drive n	nodule ri	ight-han	nd					
Z1		rive cent						М	Modifie		J						
AL		nodule le		l													
/ _	_	er diamo		•													
	007	7 mm	etei	012	12 mm		020	20 mm		030	30 mm		050	50 mm			
	008	8 mm		014	14 mm		022	22 mm			36 mm		060	60 mm			
										036							
	010	10 mm		016	16 mm		025	25 mm		040	40 mm		065	65 mm			
	011	11 mm		018	18 mm		027	27 mm		044	44 mm	1	080	80 mm			
				(60) H													
		2	-/44 str	okes/mi	n	4	58 (70) Stroke:	s/min	6	91 (110	0) Strok	es/min	8	145 (1	76) Strokes/min	
		3	45 (55)	strokes (/min	5	73 (88)	Stroke:	s/min	7	112 (13	35) Stro	kes/min	9	207 (-)	Strokes/min	
			Liquid	end ma	aterial (includi	ng valv	e mater	ials)								
			S1	Stainle	ss steel	(see tal	ole, she	et 2)	•								
				Tempe	erature	of pum	ped me	dium									
				0		to 80 °0		2	-40 °C	to 60 °C		4	10 °C	to 150 °C	0		
				1	-25 °C	to 60 °0	0	3	10 °C f	to 115 °0	С						
						cer for											
					0			er diaph	ragm								
					1		-	-	ıragın wi	th nress	ure dan	ıne					
					'		end ve		ragiii wi	ui picoo	uic gau	ige					
						0	Standa					2	Standa	ard + dou	ıhle vəl	/A	
1						1		ard with:	enrina			3				ve with spring	
1						['				4!	m al-l-	J	Jianua	u + u0l	inic val	ve with spirity	
1							-		nection		n side		^		ANICI		
1							G		DIN/ISO				A	Flange		2	
1							N		I NPT/AI				D	Flange	DIN/IS	J	
1									ulic con			arge si					
								G		DIN/IS			Α	Flange			
								N	Thread	NPT/AI	NSI		D	Flange	DIN/IS)	
									Versio	n							
									0	no feat	ures						
									1	Liquid 6	end hea	ting					
									2	Liquid 6	end poli	shed					
									3	Specia	l paint fi	nish					
										Power	conne	ctor					
										Α	-		age 50 H	lz			
										В			•	lz adjusta	able		
										н			age 60 H	-			
										K			-	 Iz adjusta	ahla		
										0			unted pu		abic		
										1		•	with IEC	•			
										2				•	_		
										2				MA flang			
													tection	system		sion protection	
											0	IP 55			D	IP 56 EExn	
											1	IP 56			E	IP 56 EExe	
											Α	IP 55 I			F	IP 56 EExde	
											В	IP 55 I			K	IP 65 EExde	
1											С	IP 55 I	EExde				
1												Electr	ical opt	ions			
1												0	no opt				
1												1	Stroke	sensor			
1														elength	adiusti	ment	
1													0	manua			
1													1	0/4-20		out Ex	
1													2	0/4-20			
1													3	0/4-20			
1													4				
1													1 -			nout EX offshore	
1													5			Zone 2 offshore	
1													6			Zone 1 offshore	
1														_		al conditions	
1													1	0		to 40 °C	
1														1	-40 °C	to 40 °C	
1														2	0 °C to	55 °C	
1															Appro		
1													1	1	0	ICE	
1															1	API 675	
1													1	1	2		
															2	VDMA	
1															3	ATEX (ABLOTE	
1															4	ATEX / API 675	
		1	ı	1	ĺ	Ì	Ì	1	I	l	Ì	1	1		5	VDMA / ATEX	

^{**} Modified design (M) is available with every identity code feature

2.12 Hydraulic Diaphragm Metering Pumps Orlita® MF

2.12.4

Orlita® MFS 80 (MF3a) Hydraulic Diaphragm Metering Pumps

Technical Data MfS 80 Single Pump 50 Hz

Plunger Ø	Stroke volume	Pump	capacity	Q _{th} in I/			at H/min cteristic 4		Max. pressure	Efficiency at	Efficiency at	Standard type of valve
		104 [4]	122 [5]	134 [6]	155 [7]	160 [8]	182 [9]	193 [F]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
16	4.02	25	29	32	37	38	43	46	400	0.75	0.83	Ke DN 6
20	6.28	39	46	50	58	60	68	72	400	0.75	0.83	Ke DN 6
22	7.60	47	55	61	70	73	82	87	360	0.79	0.80	Ke DN 10/6
25	9.82	61	71	79	91	94	107	113	285	0.79	0.85	Ke DN 10
27	11.45	71	83	92	106	109	125	132	244	0.81	0.85	Ke DN 10
29	13.21	82	96	106	122	126	144	152	211	0.82	0.85	Ke DN 10
30	14.14	88	103	113	131	135	154	163	198	0.83	0.86	Ke DN 10
36	20.36	126	149	164	189	195	222	235	137	0.85	0.87	Ke DN 16
40	25.13	156	184	202	233	241	274	290	111	0.86	0.88	Ke DN 16
44	30.41	189	222	245	282	292	331	351	98	0.86	0.88	Ke DN 16
46	33.24	207	243	268	309	319	362	384	84	0.86	0.88	Ke DN 16
50	39.27	244	287	316	365	377	428	453	71	0.87	0.88	Ke DN 16
60	56.55	352	414	455	526	543	617	653	50	0.88	0.89	Ke DN 16/25
65	66.37	413	486	535	617	637	724	766	40	0.88	0.89	Ke DN 16/25
80	100.53	626	736	810	935	965	1,097	1,161	25	0.89	0.89	Ke DN 25
100	157.08	979	1,150	1,266	1,461	1,508	1,714	1,814	17	0.89	0.89	Ke DN 32

Technical Data MfS 80 Single Pump 60 Hz

Plunger Ø	Stroke volume	Pump o	capacity	Q _{th} in I/h	per pum		it H/min [acteristic	-	Max. pressure	Efficiency at	Efficiency at	Standard type of valve
		119 [3]	126 [4]	148 [5]	163 [6]	188 [7]	194 [8]	221 [9]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
16	4.02	28	30	35	39	45	46	53	400	0.75	0.83	Ke DN 6
20	6.28	44	47	55	61	70	73	83	400	0.75	0.83	Ke DN 6
22	7.60	54	57	67	74	85	88	100	360	0.79	0.80	Ke DN 10/6
25	9.82	70	74	87	96	110	114	130	285	0.79	0.85	Ke DN 10
27	11.45	81	86	101	112	129	133	151	244	0.81	0.85	Ke DN 10
29	13.21	94	100	117	129	149	153	175	211	0.82	0.85	Ke DN 10
30	14.14	101	107	125	138	159	164	187	198	0.83	0.86	Ke DN 10
36	20.36	145	154	180	199	229	237	269	137	0.85	0.87	Ke DN 16
40	25.13	179	190	223	245	283	292	333	111	0.86	0.88	Ke DN 16
44	30.41	217	230	270	297	343	354	402	98	0.86	0.88	Ke DN 16
46	33.24	237	251	295	325	375	387	440	84	0.86	0.88	Ke DN 16
50	39.27	280	297	349	384	443	457	520	71	0.87	0.88	Ke DN 16
60	56.55	404	428	502	553	638	659	749	50	0.88	0.89	Ke DN 16/25
65	66.37	474	502	589	649	749	773	879	40	0.88	0.89	Ke DN 16/25
80	100.53	718	761	893	983	1,134	1,171	1,332	25	0.89	0.89	Ke DN 25
100	157.08	1,123	1,189	1,396	1,537	1,774	1,830	2,081	17	0.89	0.89	Ke DN 32

Ke Conical valve

Important note:

- Abridged presentation of our complete product range. Other types on request
- Allow for a minimum 10% power reserve when designing in accordance with API
- All hydraulic performance data is based on water at 20 °C

2.12 Hydraulic Diaphragm Metering Pumps Orlita® MF

Identity Code Ordering System Orlita® MFS 80 (MF3a) hydraulic diaphragm metering pump

Drive ty	ре										-	_			-		
		rive hori	zontal*							AL	Drive n	nodule l	eft-hanc	i			
V1 I	Main d	rive vert	ical*							AR	Drive n	nodule r	ight-har	nd			
Z1 [Main d	rive cent	tral*							M	Modifie	ed **					
	Plunge	er diamo	eter														
(016	16 mm		025	25 mm		030	30 mm		044	44 mm	ı	060	60 mm		100	100 mm
	020	20 mm		027	27 mm		036	36 mm		046	46 mm		065	65 mm			
(022	22 mm		029	29 mm		040	40 mm		050	50 mm	ı	080	80 mm			
			rate 50	0 (60) H	z	_				_							
		3		Strokes		5	•	18) Strok				•	kes/min			21) strok	
		4	,	26) strok				63) Strok		8	160 (19	94) Stroi	kes/min	-	193 (-)	Strokes	/min
			S1	end ma	aterial (ss steel				iais)								
			31			•											
				0	erature	to 80 °C		ululli	2	-40 °C	to 60 °C	?		4	10 °C	to 150 °C	?
				1		to 60 °C			3		to 115 °			4	10 0	10 150 (5
				-		cer for											
					0			er diaph	ragm								
					1					th press	sure gau	ige					
						Liquid	end ve	rsion									
						0	Standa	ard									
						1	Standa	ard with	spring								
						2		ard + dou									
						3		ard + dou									
								ulic con			n side		^	F1-	ANIC		
							G		DIN/IS				A	Flange		_	
							N		NPT/A		n din - l	ores -'	D	Flange	אווע	J	
								Hydra l		I nection DIN/IS	n discha	arge SIG	de A	Flange	ANSI		
								N		NPT/A			D	Flange		O	
									Versio		1101			riango	DII 1/101		
									0	no feat	tures						
									1	Liquid	end hea	ıting					
									2	Liquid	end poli	shed					
									3	Specia	ıl paint fi	inish					
											connec						
										A			ge 50 H				
										В			-	z adjusta	able		
										H K			ge 60 H		ماماد		
										0			ige 60 H inted pu	z adjusta	abie		
										1		•	with IEC	•			
										2				MA flang	е		
																sion nr	otection
											0	IIP 55	10011011	oyo.o	D	ololi pi	IP 56 EExn
											1	IP 56			E		IP 56 EExe
											Α	IP 55 E	Exn		F		IP 56 EExd
											В	IP 55 E	Exe		K		IP 65 EExd
											С	IP 55 E	Exde				
													ical opt				
												0	no opti				
												1		sensor			
														elength		ment	
													0	manual 0/4-20 i		out Ev	
													2	0/4-20 1			
													3	0/4-20 (
													4				X offshore
													5			Zone 2 o	
													6			Zone 1 o	
																al condi	
														0		to 40 °C	
														1		to 40 °C	
														2	0 °C to	55 °C	
															Appro	vals	
1															0	CE	
															1	API 675	5
		1	Ì	1											2	VDMA	
							1	i	Ī	Ī		1	1	1	3	ATEX	
																	4 DI 0==
															4 5		API 675

*For further pump configurations see Type of drive page → 2-51

^{**} Modified design (M) is available with every identity code feature

2.12.5

Orlita® MFS 180 (MF4a) Hydraulic Diaphragm Metering Pumps

Technical Data MfS 180 Single Pump 50 Hz

Plunger Ø	Stroke volume	Pump	capacity	Q _{th} in I/I		np head a le charac			Max. pressure	Efficiency at	Efficiency at	Standard type of
		92 [4]	107 [5]	117 [6]	134 [7]	152 [8]	171 [9]	200 [F]				valve
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
25	19.63	107	126	138	157	178	201	235	366	0.77	0.83	Ke DN 16
30	28.27	155	181	199	226	257	290	339	254	0.81	0.85	Ke DN 16
36	40.72	223	262	286	326	370	417	489	176	0.83	0.86	Ke DN 16
40	50.27	276	323	353	403	457	515	604	143	0.85	0.87	Ke DN 25
44	60.82	334	391	428	488	553	623	730	118	0.85	0.87	Ke DN 25
50	78.54	431	505	552	630	714	805	943	91	0.86	0.88	Ke DN 25
55	95.03	521	611	668	762	864	974	1,141	75	0.87	0.88	Ke DN 32
60	113.10	621	727	796	907	1,029	1,160	1,359	63	0.87	0.89	Ke DN 32
65	132.73	729	854	934	1,065	1,207	1,361	1,594	54	0.88	0.89	Ke DN 32
70	153.94	845	990	1,083	1,235	1,400	1,579	1,849	46	0.88	0.89	Ke DN 40
75	176.71	970	1,137	1,243	1,418	1,608	1,812	2,123	40	0.88	0.89	Ke DN 40
80	201.06	1,104	1,293	1,415	1,613	1,829	2,062	2,416	35	0.88	0.89	Ke DN 40
85	226.98	1,246	1,460	1,597	1,821	2,065	2,328	2,727	31	0.88	0.89	Ke DN 40
90	254.47	1,397	1,637	1,791	2,042	2,315	2,610	3,057	28	0.89	0.89	Ke DN 40
95	283.53	1,557	1,824	1,995	2,275	2,590	2,908	3,407	25	0.89	0.89	Pt DN 50
100	314.16	1,725	2,021	2,211	2,521	2,858	3,223	3,775	22	0.89	0.89	Pt DN 50
115	415.48	2,281	2,673	2,924	3,334	3,781	4,262	4,992	17	0.89	0.89	Pt DN 65
125	490.87	2,696	3,158	3,455	3,939	4,467	5,036	-	14	0.89	0.90	Pt DN 65
135	572.56	3,144	3,684	4,030	4,595	5,210	5,874	6,880	12	0.89	0.90	Pt DN 65
142	633.47	3,479	4,076	4,458	5,084	5,764	6,499	7,612	11	0.89	0.90	Pt DN 65

Technical Data MfS 180 Single Pump 60 Hz

Plunger Ø	Stroke volume	Pump	capacity	Q _{th} in I/I	n per pun	np head a			Max. pressure	Efficiency at	Efficiency at	Standard type of
~		98 [3]	111 [4]	130 [5]	142 [6]	162 [7]	184 [8]	208 [9]	p. ccca c			valve
mm	ml/	I/h	I/h	I/h	I/h	I/h	I/h	I/h	bar	100%	50%	
	stroke									pressure	pressure	
25	19.63	116	130	153	167	216	244	244	352	0.77	0.83	Ke DN 16
30	28.27	167	188	220	241	275	312	352	254	0.81	0.85	Ke DN 16
36	40.72	240	271	318	347	396	449	507	176	0.83	0.86	Ke DN 16
40	50.27	297	335	392	429	489	555	625	143	0.85	0.87	Ke DN 25
44	60.82	359	405	475	519	592	671	757	118	0.85	0.87	Ke DN 25
50	78.54	464	523	613	671	765	867	978	91	0.86	0.88	Ke DN 25
55	95.03	561	633	742	811	925	1,049	1,183	75	0.87	0.88	Ke DN 32
60	113.10	668	753	883	966	1,101	1,249	1,408	63	0.87	0.89	Ke DN 32
65	132.73	784	884	1,036	1,134	1,293	1,466	1,652	54	0.88	0.89	Ke DN 32
70	153.94	909	1,026	1,202	1,315	1,499	1,700	1,916	46	0.88	0.89	Ke DN 40
75	176.71	1,044	1,178	1,380	1,509	1,721	1,951	2,200	40	0.88	0.89	Ke DN 40
80	201.06	1,188	1,340	1,570	1,717	1,958	2,220	2,503	35	0.88	0.89	Ke DN 40
85	226.98	1,341	1,513	1,772	1,939	2,211	2,507	2,826	31	0.88	0.89	Ke DN 40
90	254.47	1,503	1,696	1,987	2,174	2,478	2,810	3,168	28	0.89	0.89	Ke DN 40
95	283.53	1,675	1,890	2,214	2,422	2,762	3,131	3,530	25	0.89	0.89	Pt DN 50
100	314.16	1,856	2,094	2,453	2,684	3,060	3,470	3,912	22	0.89	0.89	Pt DN 50
115	415.48	2,455	2,769	3,245	3,549	4,047	4,589	5,173	17	0.89	0.89	Pt DN 65
125	490.87	2,900	3,272	3,834	4,193	4,781	5,422	-	14	0.89	0.90	Pt DN 65
135	572.56	3,383	3,817	4,472	4,891	5,577	6,324	_	11	0.89	0.90	Pt DN 65
142	633.47	3,743	4,223	4,947	5,412	6,171	6,997	-	11	0.89	0.90	Pt DN 65

DK Double ball valve, Plate valve

Important note: Abridged presentation of our complete product range. Other types on request

- Allow for a minimum 10% power reserve when designing in accordance with API
- All hydraulic performance data is based on water at 20 °C

Identity Code Ordering System Orlita® MFS 180 (MF4a) hydraulic diaphragm metering pump

a Drive	type						-					_				
H1		rive hori	zontal*			Z1	Main d	Irive cent	ral *			AR	Drive r	nodule r	ight-har	nd
V1		rive vert				AL		nodule le				М	Modifie		J	
		er diam														
	025	25 mm		044	44 mm		065	65 mm		085	85 mm		115	115 mi	m	
	030	30 mm		050	50 mm		070	70 mm		090	90 mm		125	125 mi		
	036	36 mm		055	55 mm		075	75 mm		095	95 mm		135	135 mi		
	040	40 mm		060	60 mm		080	80 mm		100	100 mr		142	142 mi		
		Stroke	rate 50) (60) H												
		3		Strokes/					7	134 (1	62) Strol	kes/min				
		4	92 (11	1) stroke	es/min				8	152 (18	84) Strol	kes/min				
		5	107 (1	30) Strol	kes/min				9	171 (20	08) strok	ces/min				
		6	117 (1	42) Strol	kes/min				F	200 (-)	Strokes	/min				
			Liquid	end ma	aterial (includi	ng valv	e materia	als)							
			S1	Stainle	ss steel	(see tal	ble, she	et 2)								
					erature											
				0		to 80 °		2		to 60 °C		4	10 °C	to 150 °	С	
				1		to 60 °		3	10 °C	to 115 °	С					
						cer for										
					0			er diaphr								
			Ī		1			er diaphr	agm wi	ın press	sure gau	ige				
							l end ve					0	C+	nual I	- امار	
						0	Standa		nrin~			2		ard + do		
								ard with s				3	Sianda	aı u + 00	ubie val	ve with spring
							Hydra G	ulic con			on side	Α	Flange	ANICI		
							N	Thread				D	•	DIN/IS	2	
							'`				n disak			יסו/ווט	J	
			Ī				1	Hydrau G		DIN/IS		arge sid A	r Flange	ANSI		
								N		NPT/A		D		DIN/IS	0	
			Ī				1		Versio			_	90	,	-	
									0	No fea	tures			2	Liquid	end polished
									1		end hea	ting		3	-	al paint finish
											conne	_				
										Α			ge 50H:	z		
										В	Standa	ard volta	ige 50H	z adjusta	able	
										Н	Standa	ard volta	ige 60H	z		
										K	Standa	ard volta	ige 60H	z adjusta	able	
										0	Externa	ally mou	ınted pu	ımp		
										1	without	t motor v	with IEC	flange		
										2	without	t motor v	with NE	MA flanç	ge	
													tection	system		osion protection
											0	IP 55			D	IP 56 EExn
											1	IP 56			E	IP 56 EExe
											A	IP 55 E			F	IP 56 EExde
											В	IP 55 E			K	IP 65 EExde
											С	IP 55 E				
							1					Electri 0	ical opt			
												1	No opt	sensor		
							1					[e length	adinet	ment
			Ī				1						0	Manua		ciit
			Ī				1						1			nout Ex
													2		mA Ex	
													3		mA Ex	
													4			without EX offshore
													5			Zone 2 offshore
													6			Zone 1 offshore
																al conditions
							1							0		to 40 °C
														1		to 40 °C
														2		55 °C
														-	Appro	
															0	ICE
															1	API 675
															2	VDMA
			1	1	1	1	1	1			1	1			3	ATEX
								1								
															4	ATEX / API 675

^{*}For further pump configurations see Type of drive page \rightarrow 2-51

^{**} Modified design (M) is available with every identity code feature

2.12.6

Orlita® MFS 600 (MF5b) Hydraulic Diaphragm Metering Pumps

Technical Data MfS 600 Single Pump 50 Hz

Plunger Ø	Stroke volume	Pump	capacity	/ Q _{th} in I/I		np head a le charac			Max. pressure	Efficiency at	Efficiency at	Standard type of
		90 [4]	99 [5]	117 [6]	134 [7]	156 [8]	173 [9]	204 [F]				valve
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
36	40.72	219	242	285	327	381	422	497	392	0.76	0.83	Ke DN 16
38	45.36	244	269	318	364	424	470	554	352	0.77	0.83	Ke DN 16
40	50.27	270	299	352	404	470	521	614	318	0.78	0.84	Ke DN 16
44	60.82	327	361	427	488	569	630	743	263	0.80	0.85	Ke DN 25
46	66.48	357	395	466	534	622	689	812	240	0.81	0.85	Ke DN 25
50	78.54	422	467	551	631	735	814	959	221	0.83	0.86	Ke DN 25
55	95.03	511	565	667	764	889	985	1,161	168	0.84	0.87	Ke DN 25
60	113.10	608	673	794	909	1,059	1,172	1,381	141	0.85	0.87	Ke DN 25
65	132.73	714	789	932	1,067	1,243	1,376	1,621	120	0.85	0.87	Ke DN 32
70	153.94	828	916	1,080	1,237	1,441	1,596	1,880	100	0.90	0.88	Ke DN 32
75	176.71	950	1,051	1,240	1,420	1,654	1,832	2,159	90	0.86	0.88	Ke DN 32
80	201.06	1,081	1,196	1,411	1,616	1,882	2,084	2,456	79	0.87	0.88	Ke DN 40
85	226.98	1,221	1,350	1,593	1,825	2,125	2,353	2,773	70	0.87	0.88	Ke DN 40
90	254.47	1,369	1,514	1,786	2,046	2,383	2,638	3,109	62	0.87	0.88	Ke DN 40
95	283.53	1,525	1,687	1,990	2,279	2,655	2,940	3,464	56	0.87	0.88	Ke DN 50
100	314.16	1,690	1,869	2,205	2,526	2,942	3,257	3,838	50	0.88	0.89	Ke DN 50
115	415.48	2,235	2,472	2,917	3,340	3,890	4,308	5,076	38	0.88	0.89	Ke DN 65
125	490.87	2,641	2,921	3,446	3,946	4,596	5,090	5,998	32	0.89	0.89	Ke DN 65
135	572.56	3,080	3,407	4,020	4,603	5,361	5,937	6,996	26	0.89	0.89	Ke DN 65
142	633.47	3,408	3,769	4,448	5,093	5,932	6,568	7,740	20	0.89	0.89	Ke DN 65

Technical Data MfS 600 Single Pump 60 Hz

Plunger Ø	Stroke volume	Pum	p capacit	y Q _{th} in I/		mp head a ode char		-	Max. pressure	Efficiency at	Efficiency at	Standard type of valve
		96 [3]	109 [4]	120 [5]	142 [6]	163 [7]	189 [8]	210 [9]				
mm	ml/ stroke	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100% pressure	50% pressure	
36	40.72	235	265	294	347	397	462	512	392	0.76	0.83	Ke DN 16
38	45.36	262	296	327	386	442	515	570	352	0.77	0.83	Ke DN 16
40	50.27	291	328	363	428	490	571	632	318	0.78	0.84	Ke DN 16
44	60.82	352	397	439	518	593	691	765	263	0.80	0.85	Ke DN 25
46	66.48	384	434	480	566	648	755	836	240	0.81	0.85	Ke DN 25
50	78.54	454	512	567	669	765	892	988	200	0.83	0.86	Ke DN 25
55	95.03	550	620	686	809	926	1,080	1,196	168	0.84	0.87	Ke DN 25
60	113.10	654	738	816	963	1,102	1,285	1,423	141	0.85	0.87	Ke DN 25
65	132.73	768	866	958	1,131	1,294	1,508	1,670	120	0.85	0.87	Ke DN 40
70	153.94	891	1,005	1,111	1,312	1,501	1,749	1,937	100	0.90	0.88	Ke DN 32
75	176.71	1,023	1,154	1,276	1,506	1,723	2,008	2,224	90	0.86	0.88	Ke DN 32
80	201.06	1,164	1,313	1,452	1,713	1,960	2,285	2,530	79	0.87	0.88	Ke DN 40
85	226.98	1,314	1,482	1,639	1,934	2,213	2,580	2,856	70	0.87	0.88	Ke DN 40
90	254.47	1,473	1,661	1,838	2,168	2,481	2,892	3,202	62	0.87	0.88	Ke DN 40
95	283.53	1,641	1,851	2,047	2,416	2,767	3,222	3,568	56	0.87	0.88	Ke DN 50
100	314.16	1,818	2,051	2,269	2,677	3,063	3,571	3,954	50	0.88	0.89	Ke DN 50
115	415.48	2,405	2,713	3,000	3,541	4,051	4,722	5,229	38	0.88	0.89	Ke DN 65
125	490.87	2,841	3,205	3,545	4,183	4,786	5,579	-	32	0.89	0.89	Ke DN 65
135	572.56	3,314	3,739	4,135	4,879	5,587	6,508	7,206	26	0.89	0.89	Ke DN 65
142	633.47	3,667	4,136	4,575	5,399	6,182	7,200	7,973	20	0.89	0.89	Ke DN 65

DK Double ball valve, Ke Conical valve

Important note: Abridged presentation of our complete product range. Other types on request

Allow for a minimum 10% power reserve when designing in accordance with API

 $\,\blacksquare\,\,$ All hydraulic performance data is based on water at 20 $^{\circ}\text{C}$

2.12 Hydraulic Diaphragm Metering Pumps Orlita® MF

Identity Code Ordering System Orlita® MFS 600 (MF5a) hydraulic diaphragm metering pump

b Drive t	vpe											_				
H1		rive hori	zontal *						AL	Drive r	nodule l	eft-hand				
V1	Main d	rive vert	ical *						AR	Drive r	nodule r	ight-han	ıd			
Z1	Main d	rive cen	tral *						M	Modifie						
	Plunge	er diame	eter													
	036	36 mm		046	46 mm		065	65 mm		085	85 mm		115	115 mr	n	
	038	38 mm		050	50 mm		070	70 mm		090	90 mm		125	125 mr	n	
	040	40 mm		055	55 mm		075	75 mm		095	95 mm		135	135 mr	n	
	044	44 mm		060	60 mm		080	80 mm		100	100 mr	n	142	142 mr	n	
		Stroke	rate 50	(60) H	z											
		3	- (96) 5	Strokes/ı	min	5	99 (12	0) Stroke	es/min	7	134 (16	3) Strok	ces/min	9	173 (2	10) strokes/min
		4	90 (10	9) stroke	es/min	6	117 (14	42) Strok	es/min	8	156 (18	39) Strok	ces/min	F	204 (-)	Strokes/min
			Liquid	end ma	aterial (includir	ng valv	e materi	ials)							
			S1	Stainle	ss steel	(see tab	le, she	et 2)								
				Tempe	erature			dium								
				0		to 80 °C			2		to 60 °C			4	10 °C	to 150 °C
				1	-25 °C	to 60 °C			3	10 °C	to 115 °	С				
					Displa	cer forr	nat									
					0	PTFE r	nulti-lay	er diaph	ragm							
					1	PTFE r	nulti-lay	er diaph	ragm w	ith press	sure gau	ge				
							end ve									
						0	Standa						2			uble valve
						1		ard with s					3	Standa	ırd + do	uble valve with spring
								ulic con			n side					
							G		DIN/IS				A	Flange		^
							N		NPT/A				D	Flange	DIN/IS	U
											n discha	arge sid			41101	
								G		DIN/IS			A	Flange		^
								N		NPT/A	IVSI		D	Flange	DIN/IS	U
									Versio 0		4		^	Liannial	end pol	i a la a d
									1	No fea	end hea	tina	2		ena poi I paint f	
									'				3	Specia	ı pairit i	1111511
										A	Conne	rd volta	ao 50U-	,		
										В			_	z z adjusta	hlo	
										Н		rd volta	_		IDIC	
										K			_	z adjusta	hle	
										0		ally mou	-	-		
										1		t motor v	-			
										2				MA flang	ie.	
										_						sion protection
											0	IP 55	.cciioii	D	IP 56 E	
											1	IP 56		E	IP 56 E	
											Α	IP 55 E	Exn	F	IP 56 E	
											В	IP 55 E		K	IP 65 E	Exde
											С	IP 55 E				
											_		cal opt	ions		
												0	no opti			
												1		sensor		
										Ī		1		elength	adiust	ment
													0	manua		
													1	0/4-20	mA with	nout Ex
													2	0/4-20	mA Ex	Zone 2
													3	0/4-20	mA Ex	Zone 1
										Ī		1	4	0/4-20	mA Ex	without EX offshore
													5	0/4-20	mA Ex	Zone 2 offshore
													6	0/4-20	mA Ex	Zone 1 offshore
										Ī		1		Enviro	nment	al conditions
														0	-20 °C	to 40 °C
														1	-40 °C	to 40 °C
										Ī		1		2	0 °C to	55 °C
															Appro	
															0	CE
															1	API 675
1										Ī		1			2	VDMA
	1														3	ATEX
				i	1	1		1	ı	I	1	l	l	1	4	ATEX / API 675
															7	ATEX / AFTO/3
															5	VDMA / ATEX

^{*}For further pump configurations see Type of drive page \rightarrow 2-51

^{**} Modified design (M) is available with every identity code feature

2.12.7

Orlita® MFS 1400 (MF6a) Hydraulic Diaphragm Metering Pumps

Technical Data MfS 1400 Single Pump 50 Hz

Plunger Ø	Stroke volume	Pump	capacity	/ Q _{th} in I/I	h per pun cod		at H/min teristic 4	-	Max. pressure	Efficiency at	Efficiency at	Standard type of
		80 [4]	93 [5]	106 [6]	125 [7]	143 [8]	169 [9]	191 [F]				valve
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
30	42.41	202	235	270	318	364	431	486	630	0.67	0.78	Ke DN 16
40	75.40	360	419	480	565	647	766	864	435	0.75	0.83	Ke DN 25
42	83.13	397	462	529	623	713	844	952	435	0.76	0.83	Ke DN 25
44	91.23	435	507	581	684	783	927	1,045	394	0.76	0.83	Ke DN 25
46	99.71	476	554	635	748	856	1,013	1,142	361	0.77	0.83	Ke DN 25
50	117.81	562	654	750	884	1,011	1,197	1,350	305	0.79	0.84	Ke DN 25
53	132.37	632	735	843	993	1,136	1,345	1,517	271	0.79	0.84	Ke DN 32
55	142.55	681	792	907	1,070	1,224	1,448	1,633	250	0.81	0.85	Ke DN 25
57	153.11	731	851	975	1,149	1,314	1,556	1,754	235	0.81	0.85	Ke DN 32
60	169.65	810	943	1,080	1,273	1,456	1,724	1,944	212	0.82	0.86	Ke DN 25
65	199.10	951	1,106	1,268	1,494	1,709	2,023	2,282	180	0.83	0.87	Ke DN 32
70	230.91	1,103	1,283	1,470	1,733	1,983	2,346	2,646	155	0.84	0.87	Ke DN 40
75	265.07	1,266	1,473	1,688	1,989	2,276	2,694	3,038	135	0.85	0.87	Ke DN 40
80	301.59	1,440	1,676	1,920	2,263	2,590	3,065	3,456	119	0.85	0.87	Ke DN 40
90	381.70	1,823	2,121	2,431	2,865	3,278	3,879	4,375	94	0.90	0.90	Ke DN 50
100	471.24	2,251	2,619	3,001	3,537	4,047	4,789	5,401	76	0.87	0.88	Ke DN 65
120	678.58	3,242	3,772	4,321	5,093	5,827	6,896	7,778	53	0.88	0.89	Ke DN 65
140	923.63	4,412	5,134	5,882	6,933	7,932	9,387	10,587	38	0.88	0.89	Ke DN 80
160	1,206.37	5,763	6,706	7,683	9,055	10,360	12,261	13,827	29	0.89	0.89	Ke DN 80

Technical Data MfS 1400 Single Pump 60 Hz

Plunger Ø	Stroke volume	Pump	capacity	Q _{th} in I/h		•	nt H/min [l acteristic	•	Max. pressure	Efficiency at	Efficiency at	Standard type of
		88 [3]	97 [4]	112	129	152	174	206				valve
				[5]	[6]	[7]	[8]	[9]	_			
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	1/ 511 / 5
30	42.41	223	245	286	327	386	442	523	630	0.67	0.78	Ke DN 16
40	75.40	396	437	508	582	686	785	930	435	0.75	0.83	Ke DN 25
42	83.13	437	482	560	642	757	866	1,025	435	0.76	0.83	Ke DN 25
44	91.23	480	529	615	705	831	951	1,125	394	0.76	0.83	Ke DN 25
46	99.71	524	578	672	770	908	1,039	1,230	361	0.77	0.83	Ke DN 25
50	117.81	619	683	794	910	1,073	1,228	1,453	305	0.79	0.84	Ke DN 25
53	132.37	696	767	893	1,023	1,206	1,379	1,632	271	0.79	0.84	Ke DN 32
55	142.55	750	826	961	1,102	1,298	1,486	1,758	250	0.81	0.85	Ke DN 25
57	153.11	805	887	1,033	1,183	1,394	1,596	1,888	235	0.81	0.85	Ke DN 32
60	169.65	892	983	1,144	1,311	1,545	1,768	2,092	212	0.82	0.86	Ke DN 25
65	199.10	1,047	1,154	1,343	1,539	1,814	2,075	2,456	180	0.83	0.87	Ke DN 32
70	230.91	1,214	1,339	1,558	1,785	2,103	2,407	2,848	155	0.84	0.87	Ke DN 40
75	265.07	1,394	1,537	1,788	2,049	2,415	2,763	3,270	135	0.85	0.87	Ke DN 40
80	301.59	1,586	1,748	2,035	2,331	2,747	3,143	3,720	119	0.85	0.87	Ke DN 40
90	381.70	2,008	2,213	2,575	2,950	3,477	3,979	4,200	94	0.90	0.90	Ke DN 50
100	471.24	2,479	2,732	3,179	3,642	4,293	4,912	4,708	76	0.87	0.88	Ke DN 65
120	678.58	3,570	3,935	4,578	5,245	6,182	7,073	8,371	53	0.88	0.89	Ke DN 65
140	923.21	4,859	5,356	6,232	7,140	8,415	9,628	_	38	0.88	0.89	Ke DN 80
160	1,206.37	6,347	6,995	8,140	9,325	10,991	12,575	-	29	0.89	0.89	Ke DN 80

DK Double ball valve Conical valve

Important note:

- Abridged presentation of our complete product range. Other types on request
- Allow for a minimum 10% power reserve when designing in accordance with API
- All hydraulic performance data is based on water at 20 °C

2.12 Hydraulic Diaphragm Metering Pumps Orlita® MF

Identity Code Ordering System Orlita® MFS 1400 (MF6a) hydraulic diaphragm metering pump

MF6a	Drive						_										
	H1 V1			e horizo e vertica			Z1 AL		lrive bare nodule le				AR M	Drive r Modifie	nodule r ed **	ight-har	nd
		Plunge	er diam	eter													
		030 040	30 mm		046 050	46 mm 50 mm		057 060	57 mm 60 mm		075 080	75 mm 80 mm		120 140	120 mi		
		040	42 mm		053	53 mm		065	65 mm		090	90 mm		160	160 mi		
		044	44 mm		055	55 mm		070	70 mm		100	100 mr					
			3 4		Strokes/ strokes	min	5 6		2) Stroke 29) Strok		7 8		,	kes/min kes/min		169 (2 191 (-)	06) strokes/min
				Liquid S1		aterial (e materi et 2)	ials)							
						erature	,	ped me	,	40 °C	to 60 °(_	4	10 °C	to 150 °	<u></u>	
					1	-25 °C	to 60 °C	3	3		to 115 °		4	10 0	10 150		
						Displa 0	cer for		er diaph	ragm							
						1	PTFE	multi-lay	er diaph		ith pres	sure gau	ige				
							Liquid 0	end ve Standa					2	Standa	ard + do	uble val	ve
							1		ard with s	spring			3				ve with spring
								Hydra G	ulic con	nection		on side	Α	Flange	ANSI		
								N		NPT/A			D	•	DIN/IS	0	
									Hydra G		nection DIN/IS	n discha	arge sid	de			
									N	Thread	NPT/A						
									A D	Flange	: ANSI : DIN/IS	0					
										Versio	n						
										0	no feat Liquid	tures end hea	iting				
										2	Liquid	end poli	shed				
										3		al paint fi r conne					
											Α	Standa	ard volta	ige 50H			
											B H			ige 50H: ige 60H:	z adjusta z	able	
											K			-	z adjusta	able	
											0		-	ınted pu with IEC			
											2				MA flang		
												Electri 0	i cal pro IIP 55	tection	system	n / explo	sion protection IP 56 EExn
												1	IP 56			E	IP 56 EExe
												A B	IP 55 E			F K	IP 56 EExde IP 65 EExde
												С	IP 55 E			IX.	II OJ LLXGE
													Electr 0	ical opt			
													1	-	sensor		
															elength		ment
														0	manua 0/4-20	ıl mA with	nout Ex
														2	0/4-20	mA Ex	Zone 2
														3 4		mA Ex	Zone 1 without EX offshore
														5			Zone 2 offshore
														6			Zone 1 offshore
															0		al conditions to 40 °C
															1		to 40 °C
															2	0 °C to	
																0	CE
																1 2	API 675 VDMA
																3	ATEX
																4 5	ATEX / API 675 VDMA / ATEX
																5	V DIVIA / ATEX
					Fa f			l Doğumları	١	I 	٠.,		_	F 1			

^{*}For further pump configurations see Type of drive page \rightarrow 2-51

^{**} Modified design (M) is available with every identity code feature

2.13 Hydraulic Diaphragm Metering Pump Orlita® MH

2.13.1

Hydraulic Diaphragm Metering Pumps Orlita® MH with Metal

Reliable capacity even at very high pressure

Capacity range of single pump: up to 800 l/h, up to 700 bar

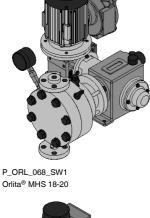
The diaphragm metering pump Orlita® MH has a robust metal diaphragm, which permits precise pump capacities even at very high pressure. The ORLITA® MH has a modular construction and therefore has a versatile range of uses. A range of power end versions are therefore available and drives, power ends and dosing heads can be freely combined.

ORLITA® MH hydraulic diaphragm metering pumps (MHS 18 to MHS 1400) with a stroke length of 15 to 60 mm provide a capacity range of up to 800 l/h at pressures of up to 7 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification. The Orlita® MF product range is designed to comply with API 675. Its modular construction permits the free combination of drives, power ends and dosing heads, producing a pump for a range of different feed rates and media operating at different working pressures.

Your benefits

Excellent process safety and reliability:

- Metal double diaphragm with integrated diaphragm rupture warning system ensures precise and lowwear operation even at very high pressure
- The product chamber is hermetically separated from the hydraulic part
- Integrated hydraulic relief valve and automatic bleed valve for the hydraulic chamber
- Wear-free, valveless enforced anti-cavitation of the hydraulic leakage guarantees optimum dosing
- Cone valves for use as suction and/or discharge valves with minimal wear, good self-cleaning and low pressure loss (NPSHR)


Excellent flexibility:

- It is possible to combine up to 6 metering units, even with different pump capacities, in multiple pump
- The modular construction ensures a wide range of uses
- 6 different gear ratios are available
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Temperature range -60 °C to +200 °C
- Customised designs are available on request

Technical Details

- MHS 18 Stroke length: 0-15 mm, Rod force: 1,750 N
- MHS 35 Stroke length: 0-20 mm, Rod force: 3,500 N MHS 80 - Stroke length: 0-20 mm, Rod force: 14,000 N
- MHS 180 Stroke length: 0-40 mm, Rod force: 18,000 N
- MHS 600 Stroke length: 0-40 mm, Rod force: 40,000 N
- MHS 1400 Stroke length: 0-60 mm, Rod force: 60,000 N Stroke length adjustment range: 0 – 100% in operation and idle.
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive).
- Metering reproducibility is better than \pm 0.5% within the stroke length adjustment range of 10 100% under defined conditions and with proper installation.
- Metal diaphragm with diaphragm rupture monitoring system
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Temperature range 60 °C to + 200 °C
- Design in compliance with API 675 among others

- Oil/ gas production (onshore/offshore)
- Chemical/Petrochemical industry
- Pharmaceuticals & cosmetics
- Food production
- Packaging industry (bottling pumps)



P ORL 067 SW1 Orlita® MHS 35/45

P ORL 069 SW1

P_ORL_070_SW1 Orlita® MHS 600-28-28

2.13 Hydraulic Diaphragm Metering Pump Orlita® MH

Pump type	Plunger Ø	Stroke volume		in (50 Hz)	Max. pressure				
			58	73	91	112	145	207	
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar
MHS 18/	3	0.11	0.37	0.46	0.58	0.71	0.92	1.32	100
MHS 18/	5	0.29	1	1.2	1.6	1.9	2.5	3.6	400
MHS 18/	6	0.42	1.4	1.8	2.3	2.8	3.6	5.2	400
MHS 18/	7	0.58	2	2.5	3.1	3.8	5	7.1	400
MHS 18/	8	0.75	2.6	3.2	4.1	5	6.5	9.3	348
MHS 18/	10	1.18	4.1	5.1	6.4	7.8	10.2	14.6	222
MHS 18/	12	1.70	5.9	7.3	9.2	11.3	14.7	21	154
MHS 18/	16	3.02	10.5	13.1	16.4	20.1	26.2	37.4	87
MHS 18/	20	4.71	16.4	20.5	25.5	31.5	41	58.5	55

Pump type	Plunger Ø	Stroke volume		Max. cap	acity (theo	.) in I/h at	strokes/mi	n (50 Hz)	Max. pressure
			58	73	91	112	145	207	
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar
MHS 35/	7	0.77	2.6	3.3	4.1	5.1	6.7	9.5	900
MHS 35/	8	1.01	3.5	4.3	5.4	6.7	8.7	12.4	630
MHS 35/	10	1.57	5.4	6.8	8.5	10.5	13.6	19.5	445
MHS 35/	12	2.26	7.8	9.8	12.3	15.1	19.6	28.1	309
MHS 35/	14	3.08	10.7	13.3	16.7	20.6	26.7	38.2	227
MHS 35/	16	4.02	13.9	17.4	21.8	26.9	34.9	49.9	174
MHS 35/	18	5.09	17.7	22.1	27.6	34.0	44.2	63.2	137
MHS 35/	20	6.28	21.8	27.3	34.1	42.0	54.6	78.0	111
MHS 35/	22	7.60	26.4	33.0	41.3	50.8	66.1	94.4	92
MHS 35/	25	9.80	34.1	42.7	53.3	65.7	85.4	122.0	71
MHS 35/	36	20.36	70.8	88.5	110.6	136.2	177.1	253.0	34
MHS 35/	40	25.13	87.4	109.3	136.6	168.2	218.6	312.3	27
MHS 35/	45	31.81	110.6	138.3	172.9	212.8	276.7	395.3	22

Pump type	Plunger Ø	Stroke volume		n (50 Hz)	Max. pressure				
			98	104	122	134	160	182	
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar
MHS 80/	16	4.02	23.6	25.0	29.4	32.4	38.6	43.9	696
MHS 80/	18	5.09	29.9	31.7	37.2	41.0	48.8	55.5	550
MHS 80/	20	6.28	37.0	39.1	46.0	50.6	60.3	68.5	445
MHS 80/	22	7.60	44.7	47.4	55.6	61.3	73.0	82.9	368
MHS 80/	25	9.82	57.8	61.2	71.9	79.1	94.2	107.1	285

Pump type	Plunger Ø	Stroke volume		Max. capa	city (theo.) in I/h at s	trokes/mii	n (50 Hz)	Max. pressure
			99	117	134	156	173	204	
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar
MHS 600/25,5	25.5	20.43	121	143	164	191	211	249	783
MHS 600/28	28	24.63	146	172	198	230	255	300	649
MHS 600/30	29.2	26.79	159	188	215	250	277	327	570
MHS 600/32	32	32.17	191	225	258	301	333	393	497

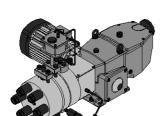
Pump type	Plunger Ø	Stroke volume		in (50 Hz)	Max. pressure				
			93	106	125	143	169	191	
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar
MHS 1400/	30	42.41	235	270	318	364	431	486	848
MHS 1400/	32	48.25	268	307	362	414	490	553	746
MHS 1400/	36	91.07	339	388	458	524	620	700	589
MHS 1400/	40	75.40	419	480	565	647	766	864	477

Important note:

Abridged presentation of our complete product range. Other types on request

2.14 Hydraulic Metal Diaphragm Metering Pump Highpressure Orlita® MHHP

2.14.1


Hydraulic Metal Diaphragm Metering Pump High-pressure Orlita®

Reliable capacity even at maximum pressure

Capacity range of single pump: 3 - 11 l/h, 3,000 bar

The metal diaphragm metering pumps Orlita® MHHP are special pumps, which provide precise pump capacities even at maximum pressures of up to 3,000 bar.

P ORI 065 SW1 Orlita® MHR 150/7

The hydraulic metal diaphragm metering pumps ORLITA® MHRH 150 / MHSH 600 have a metal diaphragm, which is designed to meter precisely at maximum pressures of up to 3,000 bar, thereby ensuring outstanding process reliability and safety.

Technical Details

- MHSH: Stroke length: 0 40 mm, rod force: 40,000 N
- MHRH: Stroke length: 0 32 mm, rod force: 15,000 N
- Stroke length adjustment range: 0 100% in operation and idle
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 0.5 % within the 10 100 % stroke length range under defined conditions and with correct installation
- Metal diaphragm
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of power end/drive versions is available: Three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Temperature range -10 °C to +60 °C

- Chemical/petrochemical industry
- Maximum pressure applications of up to 3,000 bar

Pump type	Plunger Ø	Stroke volume	Max. capacity	(theo.) in I/h	at strokes/mi	n (50 Hz)	Max. pressure
			58	87	116	145	
	mm	ml/stroke	l/h	l/h	l/h	l/h	bar
MHRH 150/	6	0.90	3.1	4.7	6.3	7.8	3,000
MHRH 150/	7	1.23	4.2	6.4	8.5	10.7	3,000

Pump type	Plunger Ø	Stroke volume	Max. c	apacity (theo.) in	l/h at stro	kes/min (50 Hz)	Max. pressure
			90	99	117	134	156	173	
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar
MHSH 600/	10.5	3.46	18.6	20.6	24.3	27.8	32.4	35.9	3,000

2.15 Plunger Metering Pump Sigma/ 2 (Basic Type)

2.15.1

pk 2 006

Plunger Metering Pump Sigma/ 2 (Basic Type)

Sigma plunger pump - durable and high-performance

Capacity range 2 - 76 l/h, 320 - 12 bar

The plunger metering pump Sigma/ 2 (Basic Type) is an extremely robust plunger metering pump with high-performance plunger and the option to adjust the pump capacity in 0.2% increments. It offers a wide range of power end versions, such as three-phase or 1-phase AC motors, even for Exe and Exde areas with ATEX certification.

The plunger petering pump Sigma/ 2 (Basic Type) (SBKa) is a metering pump, the pump capacity of which can be precisely adjusted in 0.2% increments, either manually or optionally with an electric actuator or control drive. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

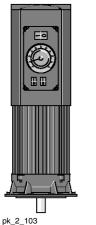
Your benefits

Excellent process safety and reliability:

■ Metering reproducibility is better than ± 1% within the 10 – 100% stroke length range under defined conditions and with correct installation

Flexible adaptation to the process:

- Wide range of power end versions, also for use in Exe and Exde areas and different flange designs for the use of customised motors
- Customised designs are available on request



- Stroke length: 15 mm
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 0.2% increments (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1% within the 10-100% stroke length adjustment range under certain defined conditions and with proper installation
- Wetted materials: Stainless steel 1.4571/1.4404, special materials are available on request
- High-performance oxide ceramic plunger
- A wide range of power end versions is available: Three-phase standard motor, 1-phase AC motor, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection IP 55
- Highly rigid fibreglass-reinforced plastic housing with excellent chemical resistance
- Provide suitable overload protection in all plunger metering pumps during installation for safety reasons

- Volume-proportional metering of chemicals in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

2.15 Plunger Metering Pump Sigma/ 2 (Basic Type)

Variable speed motor with integrated frequency converter

Sigma Basic Type Control Functions

Stroke length actuator/controller

Actuator for automatic stroke length adjustment, actuating period approx. 1 sec for 1 % stroke length, 1 k Ω response signal potentiometer, enclosure rating IP 54.

Controller consists of actuator with servomotor and integrated servo control for stroke length adjustment via a standard signal. Standard signal input 0/4-20 mA corresponds to stroke length 0 - 100%. Automatic/manual operation selection key for manual stroke adjustment. Mechanical status display of actual stroke length value output 0/4-20 mA for remote display.

Variable speed motors with integrated speed controller (identity code characteristic V)

Power supply 1 ph 230 V, 50/60 Hz, 0.37 kW.

External control with 0/4-20 mA (see pk_2_103)

(Speed Controllers see p. → 1-82)

Speed controllers in metal housing (identity code specification Z)

The speed controller assembly consists of a frequency converter and a variable speed motor of 0.37 kW. (Speed Controllers see p. \rightarrow 1-82)

2.15 Plunger Metering Pump Sigma/ 2 (Basic Type)

Technical Data

Type SBKa				or at 50 Hz		With 1800 rpm motor at 60 Hz			Suction lift	Perm. pre- pressure suction	Connector Suction/ Discharge Side	Shipping weight	Plunger Ø
	ט		y rate at ax. back	Max. stroke	ט	•	rate at	Max. stroke		side			
			ressure	rate			essure	rate					
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h	gph (US)	Strokes/ min	m WC	bar	Rp-DN	kg	mm
32002	320	1.9	0.46	71	4,641	2.3	0.61	84	5.0	160	1/4	24	8
23004	230	4.0	0.52	129	3,336	4.8	1.27	154	5.0	115	1/4	24	8
10006	100	6.4	0.55	195	1,450	7.6	2.01	233	5.0	50	1/4	24	8
14006	140	6.1	1.42	71	2,031	7.1	1.88	84	4.0	70	1/4	24	12
10011	100	11.0	1.43	129	1,450	13.1	3.46	153	4.0	50	1/4	24	12
05016	50	16.7	1.43	195	725	20.0	5.28	233	4.0	25	1/4	24	12
07012	70	12.4	2.90	71	1,015	14.8	3.91	85	4.0	35	1/4	24	17
04522	45	22.5	2.91	129	653	26.7	7.05	153	4.0	22.5	1/4	24	17
02534	25	34.1	2.92	195	363	40.8	10.78	233	4.0	12.5	1/4	24	17
04022	40	22.4	5.26	71	580	26.5	7.00	84	4.0	20	3/8	25	23
02541	25	41.5	5.37	129	363	49.2	13.00	153	4.0	12.5	3/8	25	23
01264	12	64.0	5.45	195	174	76.0	20.08	233	4.0	6	3/8	25	23

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure	Seals/ball seat	Balls	Ball seat
		connector			
SST	Stainless steel 1.4404	Stainless steel 1.4404	PTFE or	Ceramic	Stainless steel 1.4404
			PTFE +25% carbon		

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.25 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	0.37 kW	with PTC, speed adjustment range 1:20 with external fan 1 ph 230 V; 50/60Hz
V0	1 ph, IP 55	230 V ±5%	50/60 Hz	0.37 kW	Variable speed motor with integrated frequency converter
M	1 ph AC, IP 55	230 V ±5%	50/60 Hz	0.18 kW	
N	1 ph AC, IP 55	115 V ±5%	60 Hz	0.18 kW	
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	0.18 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.18 kW	with PTC, speed control range 1:5
P1	3 ph, II2GEExellT3	250-280 V/440-480 V	60 Hz	0.18 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	0.21 kW	with PTC, speed control range 1:5

Motor data sheets can be requested for more information.

Special motors or special motor flanges are possible on request.

The motors are designed in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.15 Plunger Metering Pump Sigma/ 2 (Basic Type)

2.15.2

Identity Code Ordering System for SBKa

Sigma Basic Type SBKa

SBKa	Drive	type											
	HK		rive, plu	nger									
			, p										
		Туре	1	1.0									
		00000	bar	l/h									
		32002		1.9									
		23004	230	4.0									
		10006	100	6.4									
		14006	140	6.1									
		10011	100	11.0									
		05016		16.7									
		07012		12.4									
		04522		22.5									
		02534	25	34.1									
		04022	40	22.4									
		02541	25	41.5									
		01264	-	64.0									
		01204			-4:-1								
				end ma									
			SS		ss steel								
				Sealing	g matei	rial*							
				Т	PTFE								
					Displa	cemen	t body*						
					4		er (oxide	ceramio	2)				
					l	_			٠,				
							l end ve		- d- ud\				
						0		ing (star					
						1			orings, F	-	C, 0.1 k	oar	
							Hydra	ulic cor	nection	1			
							0	Standa	ard threa	ded cor	nector (accordi	ng to technical data)
								Versio	n				
								0		roMinen	t® logo (standar	rd)
								1		t ProMir	•	•	~ /
								м	Modifie		iciii io	go	
								IVI					
										cal pov			
									S				60 Hz, 0.18 kW
									R				otor, 230/400 V, 0.37 kW
									V (0)	Variabl	e speed	l motor v	with integrated SC 1 pH, 230 V, 50/60 Hz
									Z	1 ph, va	ariable s	speed se	et 230 V, 50/60 Hz
									M				Hz, 0.18 kW
									N				0.18 kW
									L				Hz, (EExe, EExd), 0.18 kW
									P				
									1 -				Hz, (EExe, EExd), 0.18 kW
									1				inge (size 71 (DIN)
									2	No mo	or, C 56	3 flange	(NEMA)
									3	No mot	or, B 5	size 63 ((DIN)
										Enclos	ure rat	ing	
										0		standard	d)
										1			sion ATEX-T3
										2			sion ATEX-T4
										Α	-	oower e	
												senso	
											0		oke sensor (standard)
											2	Pacing	relay (reed relay)
											3	Stroke	sensor (Namur) for hazardous locations
													e length adjustment
												0	Manual (standard)
												1	With stroke positioning motor, 230 V/50/60 Hz
												2	With stroke positioning motor, 115 V/50/60 Hz
1				1		1		1	1			3	With stroke control motor 020 mA 230 V/50/60 Hz
		1		1				1				4	With stroke control motor 420 mA 230 V/50/60 Hz
							1	1	1	l			
												5	I With stroke control motor 0 20 m/ 115 V/50/60 U-
												5	With stroke control motor 020 mA 115 V/50/60 Hz
												5 6	With stroke control motor 020 mA 115 V/50/60 Hz With stroke control motor 420 mA 115 V/50/60 Hz

2.15.3 **Spare Parts Kits**

Consisting of: 1 ceramic metering plunger, 4 valve balls, 4 ball seat discs, 2 PTFE/graphite ball seals, 2 plunger guides, 14 flat seals, 2 O-rings.

	Туре	Order no.
Liquid end FK 08	Applies to identity code: 32002, 23004, 10006	1001572
Liquid end FK 12.5	Applies to identity code: 14006, 10011, 05016	910470
Liquid end FK 25	Applies to identity code: 07012, 04522, 02534	910471
Liquid end FK 50	Applies to identity code: 04022, 02541, 01264	910472

2.16 Plunger Metering Pump Sigma/ 2 (Control Type)

2.16.1

Plunger Metering Pump Sigma/ 2 (Control Type)

Sigma plunger pump - durable, high-performance and intelligent.

Capacity range 2 - 76 l/h, 320 - 12 bar

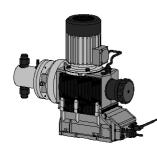
The plunger metering pump Sigma/2 (Control Type) is an extremely robust metering pump with integral control for analogue and/or contact operation. It offers the option of adjusting the pump capacity in 0.2% increments. It offers a wide range of power end versions, and different flange designs.

The plunger metering pump Sigma/ 2 (Control Type) (SCKa) is a metering pump, the pump capacity of which can be precisely adjusted in 0.2% increments, either manually or optionally with an electric actuator or control drive. The integrated controller allows the pump to adapt quickly and reliably to changing metering tasks.

Your benefits

Process reliability:

Metering reproducibility is better than ± 1% within the 10 - 100% stroke length range under defined conditions and with correct installation



- The integrated controller allows the pump to adapt quickly and reliably to changing metering tasks
- Customised designs are available on request

Technical Details

- Stroke length: 15 mm
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 0.2% increments (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1% within the 10-100% stroke length adjustment range under certain defined conditions and with proper installation
- Wetted materials: Stainless steel 1,4571/1.4404, special materials are available on request
- High-performance oxide ceramic plunger
- Integrated control for analogue and/or contact operation
- Power supply: 1-phase, $100 230 \text{ V} \pm 10\%$, $240 \text{ V} \pm 6\%$, 50/60 Hz (220 W)
- Degree of protection IP 55
- Highly rigid fibreglass-reinforced plastic housing with excellent chemical resistance
- Provide suitable overload protection in all plunger metering pumps during installation for safety reasons

- Volume-proportional metering of chemicals in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

P_ORL_066_SW1 Sigma control type SCKa

pk_2_104 Sigma Controller

2.16 Plunger Metering Pump Sigma/ 2 (Control Type)

Technical Data

Туре	m	y rate at ax. back pressure	With 1800 rpm moto		or at 60 Hz	Suction lift	Perm. pre- pressure suction side	Connector Suction/ Discharge Side	Shipping weight	Plunger Ø	
			Deli	very rate back p	at max. pressure	Max. stroke rate					
	bar	ml/ stroke	psi	l/h	gph (US)	Strokes/ min	m WC	bar	Rp-DN	kg	mm
32002	320	0.46	4,641	2.3	0.61	84	5.0	160	1/4	24	8
23004	230	0.52	3,336	4.8	1.27	154	5.0	115	1/4	24	8
10006	100	0.55	1,450	7.6	2.01	233	5.0	50	1/4	24	8
14006	140	1.42	2,031	7.1	1.88	84	4.0	70	1/4	24	12
10011	100	1.43	1,450	13.1	3.46	153	4.0	50	1/4	24	12
05016	50	1.43	725	20.0	5.28	233	4.0	25	1/4	24	12
07012	70	2.90	1,015	14.8	3.91	85	4.0	35	1/4	24	17
04522	45	2.91	653	26.7	7.05	153	4.0	22.5	1/4	24	17
02534	25	2.92	363	40.8	10.78	233	4.0	12.5	1/4	24	17
04022	40	5.26	580	26.5	7.00	84	4.0	20	3/8	25	23
02541	25	5.37	363	49.2	13.00	153	4.0	12.5	3/8	25	23
01264	12	5.45	174	65.4	17.28	200	4.0	6	3/8	25	23

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls	Ball seat
SST	Stainless steel 1.4404	Stainless steel 1.4404	PTFE or	Ceramic	Stainless steel 1.4404
			PTFE +25% carbon		

Motor Data

Identity code specification		Power supply		Re	emarks	
U	1-phase, IP 55	100 – 230 V ±10%, 240 V ±6%,	50/60 Hz	220 W		

The motors are designed in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.16 Plunger Metering Pump Sigma/ 2 (Control Type)

2.16.2

Identity Code Ordering System for SCKa

Sigma Control Type SCKa

SCKa	Drive	type															
	HK		rive, plu	nger													
1		Туре	., μ	J													
		.,,,,	bar	l/h													
		32002		2.3													
		23004		4.8													
		10006		6.4													
		14006		7.1													
		10011		13.1													
		05016		16.7													
		07012		14.8													
		04522		26.7													
		02534	25	34.1													
		04022		26.5													
		02541	25	49.2													
		01264	12	64.0													
				end ma	aterial												
			SS		ss steel												
				Sealin	g mater	rial*											
				Т	PTFE												
					Displa	cement	body*										
					4	Plunge	r (oxide	cerami	c)								
						Liquid	end ve	rsion									
						0	No spri										
						1	With 2	valve sp	orings, H	lastelloy	C 4, 0.1	l bar					
							Hydrai		nection								
							0	Standa	ard threa	ided cor	nector (accordi	ng to te	chnica	l data)		
								Versio									
								0		roMinen							
								1			nent® loo	_					
											ver sup						
									U		00-230 V		50/60	HZ			
											and plu						
										A	2 m Eu						
										В	2 m Sw						
										C D	2 m Au						
										D	2 m US	ρA					
											Relay 0	l No role					
											1	No rela		aatina r	olov 1v o	hangeover 230 V – 2A	
											3					hangeover 230 V – 2A	
											4					y open 24 V - 100 mA	
											5					nally open 24 V – 100 mA	
											A					ormally closed 2x normally oper	2/
											^	V - 100		ranning	Tolayone	ornany closed 2x normany oper	127
											F			ormally	closed 1	x changeover 230 V - 8 A	
													ol varia				
												0	Manua	al + ext	ernal with	pulse control	
												1	Manua	al + ext	ernal + pi	ulse control + analogue	
													Acces	ss cod	е		
													0		ccess co		
													1	With	access c	ode	
														Mete	ring moi		
														0		vith pulse evaluation	
														1	Input v	vith cont. evaluation	
														1	Stroke	e length adjustment	
														1	0	Manual	
														,			

2.16.3

Spare Parts Kits

Consisting of: 1 ceramic metering plunger, 4 valve balls, 4 ball seat discs, 2 PTFE/graphite ball seals, 2 plunger guides, 14 flat seals, 2 O-rings.

	Туре	Order no.
Liquid end FK 08	Applies to identity code: 32002, 23004, 10006	1001572
Liquid end FK 12.5	Applies to identity code: 14006, 10011, 05016	910470
Liquid end FK 25	Applies to identity code: 07012, 04522, 02534	910471
Liquid end FK 50	Applies to identity code: 04022, 02541, 01264	910472

2.17 Plunger Metering Pump Meta

2 17

Plunger Metering Pump Meta

Meta plunger pump - durable and high-performance

Capacity range 6 - 59 l/h, 216 - 52 bar

1

The extremely high-performance Meta is a plunger metering pump with the option of adjusting the pump capacity in 0.2% increments. It offers a wide range of power end versions, such as three-phase or 1-phase AC motors, even for Exe and Exde areas with ATEX certification.

pk_2_010

Meta plunger metering pump MTKa

pk_2_011
Meta plunger metering pump MTKa

The Meta (MTKa) is a plunger metering pump, the pump capacity of which can be precisely adjusted in 0.2% increments, either manually or optionally with an electric actuator or control drive. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Your benefits

Excellent process safety and reliability:

■ Metering reproducibility is better than ± 0.5 % within the 10 – 100% stroke length range under defined conditions and with correct installation

Flexible adaptation to the process:

- Wide range of power end versions, also for use in Exe and Exde areas and different flange designs for the use of customised motors
- Customised designs are available on request

Technical Details

- Stroke length: 15 mm,
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 0.2% increments (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1% within the 10-100% stroke length adjustment range under certain defined conditions and with proper installation
- Wetted materials: Stainless steel 1.4571/1.4404
- High-performance oxide ceramic plunger
- A wide range of power end versions is available: Three-phase standard motor, 1-phase AC motor, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection IP 55
- Fibreglass-reinforced plastic housing
- Provide suitable overload protection in all plunger metering pumps during installation for safety reasons.

Field of application

- Volume-proportional metering of chemicals in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

Control of Meta Piston Metering Pumps

(Speed Controllers see p. → 1-82)

Speed controllers in metal housing (Identity code characteristic Z)

Frequency changer built into IP 54 protective housing and main switch designed for max. 0.37 kW motor output.

Externally controlled with 0/4-20 mA / 0-10 V to correspond to 0-50 (60) Hz output frequency.

Integrated controller with versatile functions e.g. switching between external/internal control. With internal control, frequency input is via arrow keys. Multi lingual fault message display and motor temperature monitoring (thermistor-protection).

The speed controller assembly consists of a speed controller and a variable speed motor (see also identity code characteristic R).

ProMinent

2.17 Plunger Metering Pump Meta

Technical Data

Type MTKa		With 1	1500 rpm	n motor at 50 Hz	,	With 1800 r	pm motor at 60 Hz	Suction lift	Perm. pre-	Suction/	Motor rating	Shipping weight	Plunger Ø
	D	ma	rate at x. back ressure	Max. stroke rate		ery rate at max. back pressure	Max. stroke rate		pressure suction side	Discharge Side			
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h/gph (US)	Strokes/ min	m WC	bar	Rp-DN	W	kg	mm
21606	216	6.1	1.42	72	3,130	7.3/1.9	86	4.0	108	1/4	180	18	12
24006	240	6.1	1.42	72	3,477	7.3/1.9	86	4.0	120	1/4	370	20	12
16208	162	8.1	1.42	96	2,347	9.8/2.6	115	4.0	81	1/4	180	18	12
22508	225	8.1	1.42	96	3,260	9.8/2.6	115	4.0	112.5	1/4	370	20	12
12910	129	10.2	1.42	120	1,878	12.2/3.2	144	4.0	64.5	1/4	180	18	12
21610	216	10.2	1.42	120	3,130	12.2/3.2	144	4.0	108	1/4	370	20	12
10812	108	12.2	1.42	144	1,565	14.7/3.9	173	4.0	54	1/4	180	18	12
21012	210	12.2	1.42	144	3,043	14.7/3.9	173	4.0	105	1/4	370	20	12
10213	102	13.0	3.01	72	1,479	15.6/4.1	86	4.0	51	1/4	180	18	17
11313	113	13.0	3.01	72	1,644	15.6/4.1	86	4.0	56.5	1/4	370	20	17
07617	76	17.3	3.01	96	1,109	20.8/5.5	115	4.0	38	1/4	180	18	17
10617	106	17.3	3.01	96	1,541	20.8/5.5	115	4.0	53	1/4	370	20	17
06122	61	21.7	3.01	120	888	26.0/6.9	144	4.0	30.5	1/4	180	18	17
10222	102	21.7	3.01	120	1,479	26.0/6.9	144	4.0	51	1/4	370	20	17
05126	51	26.0	3.01	144	740	31.2/8.2	173	4.0	25.5	1/4	180	18	17
09926	99	26.0	3.01	144	1,438	31.2/8.2	173	4.0	49.5	1/4	370	20	17
05425	54	24.6	5.71	72	782	29.5/7.8	86	4.0	27	3/8	180	18	23
06025	60	24.6	5.71	72	869	29.5/7.8	86	4.0	30	3/8	370	20	23
04033	40	32.8	5.71	96	587	39.4/10.4	115	4.0	20	3/8	180	18	23
05633	56	32.8	5.71	96	815	39.4/10.4	115	4.0	28	3/8	370	20	23
03241	32	41.1	5.71	120	469	49.3/13.0	144	4.0	16	3/8	180	18	23
05441	54	41.1	5.71	120	782	49.3/13.0	144	4.0	27	3/8	370	20	23
02749	27	49.3	5.71	144	391	59.2/15.6	173	4.0	13.5	3/8	180	18	23
05249	52	49.3	5.71	144	761	59.2/15.6	173	4.0	26	3/8	370	20	23

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure	Seals	Valve balls	Valve seat	Plunger
		connector				
SST	Stainless steel 1.4404	Stainless steel 1.4404	PTFE or	Ceramic	Stainless steel 1.4404	Ceramic
			PTFE + 25 % carbon			

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.18/0.37 kW 0.18/0.37 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	0.37 kW	With PTC, speed adjustment range 1:20 with external fan 1 ph 230 V; 50/60Hz
M	1 ph AC, IP 55	230 V ±5%	50/60 Hz	0.37 kW	
N	1 ph AC, IP 55	115 V ±5%	60 Hz	0.37 kW	
L1	3 ph, II2GEExelIT3	220-240 V/380-420 V	50 Hz	0.18/0.37 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.18/0.37 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExelIT3	250-280 V/440-480 V	60 Hz	0.18/0.37 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	0.18/0.37 kW	With PTC, speed control range 1:5

The motor power is dependent on the pump type (see technical data).

Motor data sheets can be requested for more information.

Special motors or special motor flanges are possible on request.

The motors are designed in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.17 Plunger Metering Pump Meta

MTKa Drive type

2.17.2 Identity Code Ordering System for MTKa

Meta piston metering pump, version a

	Dilve		rivo										
	Н	Main d											
1	Α	Add-or	n drive										
		Type											
			bar	I/h									
		21606		6.1									
		24006		6.1									
		16208		8.1									
		22508	225	8.1									
		12910	129	10.2									
		21610	216	10.2									
		10812	108	12.2									
		21012		12.2									
		-											
		10213		13.0									
		11313		13.0									
		07617	76	17.3									
		10617	106	17.3									
		06122	61	21.7									
		10222		21.7									
		05126		26.0									
		09926		26.0									
		05425		24.6									
		06025	60	24.6									
1		04033	40	32.8									
l		05633		32.8									
		03241		41.1									
1		05441		41.1									
		02749		49.3									
		05249	52	49.3									
			Liquid	end ma	aterial								
			SS	Stainle	ess steel								
				Sealin	g mate	rial*							
				Т	PTFE								
						cement	hody*						
					S	Standa Liquid 0		or ovid	lo ooram	io			
					3				ie ceran	IIC			
							No valv						
						1	With 2	valve sp	orings, H	astelloy	C, 0.1 l	oar	
							Hydrai	ulic cor	nection	1			
							0				nector (accordi	ng to technical data)
								Versio					<u> </u>
								0		oMinen	t® logo	standa	rd)
								1		t ProMir			- /
								M	Modifie		10111 10	90	
								IVI					
										cal pov	er sup	ply = 0	0011 (1100)
									S				60 Hz (WBS)
									R	3 ph, v	ariable s	speed m	otor, 230 V/400 V
									Z	1 ph, v	ariable s	peed s	et 230 V, 50/60 Hz
									М	1 ph. A	C, 230 \	7. 50/60	Hz
									N		C, 115		
									L				Hz, (Exe, Exd)
									P				Hz, (Exe, Exd)
									1		tor, with		
					1				2		tor, with		
									3	No mo	tor, with	flange '	160/71
													- 0
									4	No mo	or, with	flange 5	56 C
											tor, with		
									4 0	Add-or	pump (no moto	
										Add-or Enclos	pump (sure rat	no moto	or)
										Add-or Enclose 0	pump (sure rat IP 55 (s	no moto ing standar	or) d)
										Add-or Enclose 0	pump (sure rat IP 55 (s Exe mo	no moto ing standaro otor vers	or) d) sion ATEX-T3
										Add-or Enclose 0 1 2	pump (sure rat IP 55 (s Exe mo Exd mo	no moto ing standard otor vers otor vers	or) d) sion ATEX-T3 sion ATEX-T4
										Add-or Enclose 0	pump (sure rat IP 55 (s Exe mo Exd mo	no moto ing standaro otor vers	or) d) sion ATEX-T3 sion ATEX-T4
										Add-or Enclose 0 1 2	pump (sure rat IP 55 (s Exe mo Exd mo	no moto ing standare otor vers otor vers oower e	or) d) sion ATEX-T3 sion ATEX-T4 nd
										Add-or Enclose 0 1 2	pump (sure rat IP 55 (s Exe mo Exd mo ATEX Stroke	no moto ing standard otor vers otor vers oower e	or) d) sion ATEX-T3 sion ATEX-T4 nd r
										Add-or Enclose 0 1 2	pump (sure rat IP 55 (see mo Exe mo Exd mo ATEX (Stroke	no moto ing standare otor vers otor vers oower e senso No stro	or) d) sion ATEX-T3 sion ATEX-T4 nd r oke sensor (standard)
										Add-or Enclose 0 1 2	pump (sure rat IP 55 (s Exe mo Exd mo ATEX Stroke	no moto ing standare otor vers oower e senso No stro With si	or) d) sion ATEX-T3 sion ATEX-T4 nd r oke sensor (standard) croke sensor, Namur signal (Ex)
										Add-or Enclose 0 1 2	pump (sure rat IP 55 (see mo Exe mo Exd mo ATEX (Stroke	ing standard of the version were senso No strokers Strokers	or) d) sion ATEX-T3 sion ATEX-T4 nd r ske sensor (standard) croke sensor, Namur signal (Ex) e length adjustment
										Add-or Enclose 0 1 2	pump (sure rat IP 55 (see mo Exe mo Exd mo ATEX (Stroke	no moto ing standard otor verso oower e senso No stro With si Stroke	or) d) sion ATEX-T3 sion ATEX-T4 nd r oke sensor (standard) roke sensor, Namur signal (Ex) length adjustment Manual (standard)
										Add-or Enclose 0 1 2	pump (sure rat IP 55 (see mo Exe mo Exd mo ATEX (Stroke	no moto ing standard otor version vers	or) d) sion ATEX-T3 sion ATEX-T4 nd r ske sensor (standard) croke sensor, Namur signal (Ex) e length adjustment
										Add-or Enclose 0 1 2	pump (sure rat IP 55 (see mo Exe mo Exd mo ATEX (Stroke	no moto ing standard otor verso oower e senso No stro With si Stroke	or) d) sion ATEX-T3 sion ATEX-T4 nd r oke sensor (standard) roke sensor, Namur signal (Ex) length adjustment Manual (standard)
										Add-or Enclose 0 1 2	pump (sure rat IP 55 (see mo Exe mo Exd mo ATEX (Stroke	no mote ing standard otor vers otor vers oower e senso No stro With st Stroke	or) d) sion ATEX-T3 sion ATEX-T4 nd roke sensor (standard) troke sensor, Namur signal (Ex) e length adjustment Manual (standard) With stroke positioning, 115 V/50/60 Hz With stroke control motor 020 mA 230 V/50/60 Hz
										Add-or Enclose 0 1 2	pump (sure rat IP 55 (see mo Exe mo Exd mo ATEX (Stroke	no mote ing standard otor vers oower e senso No stro With st Stroke 0 2 A B	or) d) sion ATEX-T3 sion ATEX-T4 nd r bke sensor (standard) croke sensor, Namur signal (Ex) e length adjustment Manual (standard) With stroke positioning, 115 V/50/60 Hz With stroke control motor 020 mA 230 V/50/60 Hz With stroke control motor 420 mA 230 V/50/60 Hz
										Add-or Enclose 0 1 2	pump (sure rat IP 55 (see mo Exe mo Exd mo ATEX (Stroke	no mote ing standard otor vers otor vers oower e senso No stro With st Stroke	or) d) sion ATEX-T3 sion ATEX-T4 nd roke sensor (standard) troke sensor, Namur signal (Ex) e length adjustment Manual (standard) With stroke positioning, 115 V/50/60 Hz With stroke control motor 020 mA 230 V/50/60 Hz

Process Metering Pumps

2.17 Plunger Metering Pump Meta

2.17.3 **Spare Parts**

Spare Parts Kits for Plunger Metering Pump Meta (MTKa)

Consisting of:

- 1 ceramic plunger
- valve balls
- ball seat discs
- 2 PTFE /graphite plunger packing rings
- 2 plunger guide bands
- 14 flat seals
- 2 O-rings

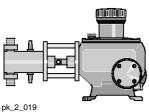
	Order no.
Liquid end FK 12.5 Applies to identity code: 21606, 24006, 16208,	910470
22508, 12910, 21610, 10812, 21012	
Liquid end FK 25 applies to identity code: 10213, 11313, 07617,	910471
10617, 06122, 10222, 05126, 09926	
Liquid end FK 50 applies to identity code: 05425, 06025, 04033,	910472
05633, 03241, 05441, 02749, 05249	

Mounting Frame for Meta MTMa and MTKa

A base frame is available for main and add-on pump combinations.

	Order no.
Base frame for main and one add-on pump	803897
Base frame for main and two add-on pumps	803898
Base frame for main and three add-on pumps	803899

2.18.1


Plunger Metering Pump Makro TZ

Powerful, built to last with a plunger

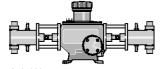
Capacity range of single pump: 8 - 1,141 l/h, 320 - 11 bar

The plunger metering pump Makro TZ impresses with its excellent process reliability, outstanding flexibility and its modular construction enables it to be outstandingly adapted to the performance requirements of the respective application.

Makro TZ plunger metering pump

The plunger metering pump Makro TZ (TZKa) has an adjustable eccentric drive mechanism and, together with the Makro TZ diaphragm metering pump, forms a range of drive mechanisms with stroke lengths of 10 and/or 20 mm. This covers the capacity range from 8 to 2,100 l/h at 320 - 4 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Your benefits


Process reliability:

■ Metering reproducibility is better than ± 0.5 % within the 10 – 100% stroke length range under defined conditions and with correct installation

pk_2_018 Makro TZ TZKa externally mounted pump

Excellent flexibility:

- The modular construction with single and double head versions permits a wide range of applications, with the double head designs being operated in push-pull mode
- It is possible to combine up to 4 metering units, even with different pump capacities, in multiple pump systems
- 4 different gear ratios are available
- Customised designs are available on request

pk 2 020 Makro TZ TZKa double head pump

Technical Details

- Stroke length: 0-20 mm, Rod force: 8,000 N
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by means of shift ring in 0.5% increments (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 0.5% within the stroke length adjustment range of 10 100% under defined conditions and with proper installation. Observe the information in the operating instructions.
- High-performance ceramic-coated stainless steel plunger Wetted materials: Stainless steel 1.4571. Special materials are available on request
- A wide range of power end versions is available: three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Salt water-resistant, acrylic resin-coated cast aluminium housing
- Provide suitable overload protection in all plunger metering pumps during installation for safety reasons

Field of application

- Volume-proportional metering of chemicals/additives in water treatment
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of additives in industrial production engineering

PK_2_103
Variable speed motor with integrated frequency converter

Makro TZ Metering Pump Actuators

Makro TZ stroke length actuator/control drive Makro TZ actuator

Servomotor for automatic stroke length adjustment, actuating period approx. 1 sec for 1 % stroke length, including 1 k Ω feedback potentiometer for stroke position response signal, IP 54 degree of protection. Electrical connection 230 V (\pm 10 %), 50/60 Hz, 40 W mech. stroke length display fitted on the Makro TZ power end.

Special voltage/higher degrees of protection/explosion protection upon request.

Makro TZ control drive

Control drive consisting of an actuator with servomotor and integral microprocessor controller for stroke length adjustment via a standard signal. Technical data see actuator.

Design:

Standard signal current input 0/4-20 mA corresponds to stroke length 0 -100 %, manual /automatic operation switch, key switch for stroke adjustment in manual mode. Actual value output 0/4-20 mA for remote display.

Variable speed motors with integrated frequency converter (identity code specification V)

The following functions are integrated in the terminal box cover:

- Start/Stop switch
- Manual/external operation switch (0/4 20 mA)
- Potentiometer for speed control in manual mode
- Onn request externally controllable via PROFIBUS® DP

Variable speed motors with integrated frequency converter with IP 55 protection See page → 1-82

Speed controllers with frequency converter (identity code specification Z)

The speed controller (complete) comprises a frequency converter and a variable speed motor (see also identity code specification R). The frequency converter is accommodated in an IP 55 rated protective housing with integral control unit and main switch.

Externally controllable with 0/4 - 20 mA or 0 - 10 V corresponding to 0 - 50 (60) Hz output frequency.

Frequency Converters for Speed Control see page → 1-82

Process Metering Pumps

2.18 Plunger Metering Pump Makro TZ

Technical Data

Type TZKa	'	With 1500	0 rpm mot	or at 50 Hz	With 1	1800 rpm moto	or at 60 Hz	Suction lift	Connection, suction/	, Shipping weight	Plunger Ø
	Deli	•	e at max. pressure	Max. stroke rate		rate at max. ack pressure	Max. stroke rate		discharge side	-	
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h/gph (US)	Strokes/ min	m WC	G-DN	kg	mm
320009	320	8.7	2.0	72	4,627	10/2.6	86	4.0	Rp 1/4**-8	50	12
320012	320	11.6	2.0	96	4,627	14/3.7	115	4.0	Rp 1/4**-8	50	12
320014	320	14.5	2.0	120	4,627	17/4.5	144	4.0	Rp 1/4**-8	50	12
320017	320	17.4	2.0	144	4,627	21/5.5	173	4.0	Rp 1/4**-8	50	12
320018	320	17.7	4.1	72	4,627	21/5.5	86	4.0	Rp 1/4**-8	50	17
320024	320	23.6	4.1	96	4,627	28/7.4	115	4.0	Rp 1/4**-8	54	17
320030	320	29.5	4.1	120	4,627	35/9.2	144	4.0	Rp 1/4**-8	54	17
313035	313	35.4	4.1	144	4,526	42/11.1	173	4.0	Rp 1/4**-8	54	17
192033	192	32.9	7.6	72	2,776	39/10.3	86	4.0	Rp 3/8**-10	55	23
192044	192	43.9	7.6	96	2,776	59/15.6	115	4.0	Rp 3/8**-10	55	23
192055	192	54.8	7.6	120	2,776	66/17.4	144	4.0	Rp 3/8**-10	55	23
168066	168	65.8	7.6	144	2,437	79/20.9	173	4.0	Rp 3/8**-10	55	23
113057	113	57.5	13.3	72	1,634	69/18.2	86	4.0	Rp 3/8**-10	56	30
113077	113	76.6	13.3	96	1,634	92/24.3	115	4.0	Rp 3/8**-10	56	30
113096	113	95.8	13.3	120	1,634	115/30.4	144	4.0	Rp 3/8**-10	56	30
096115	96	114.9	13.3	144	1,392	138/36.5	173	4.0	Rp 3/8**-10	56	30
063104	63	104.3	24.2	72	911	125/33.0	86	4.0	G 1 1/4-20	58	40
063139	63	139.0	24.2	96	911	167/44.1	115	4.0	G 1 1/4-20	58	40
063174	63	173.8	24.2	120	914	209/55.2	144	4.0	G 1 1/4-20	58	40
052208	52	208.5	24.2	144	754	250/66.0	173	4.0	G 1 1/4-20	58	40
040163	40	162.9	37.7	72	578	195/51.5	86	4.0	G 1 1/4-20	58	50
040217	40	217.2	37.7	96	578	261/68.9	115	4.0	G 1 1/4-20	58	50
040271	40	271.5	37.7	120	580	326/86.1	144	4.0	G 1 1/4-20	58	50
033326	33	325.8	37.7	144	479	391/103.3	173	4.0	G 1 1/4-20	58	50
028237	28	237.0	54.9	72	405	284/75.0	86	4.0	G 1 1/2-25	62	60
028316	28	315.9	54.9	96	405	379/100.1	115	4.0	G 1 1/2-25	62	60
027395	27	394.9	54.9	120	392	474/125.2	144	4.0	G 1 1/2-25	62	60
022474	22	473.9	54.9	144	319	569/150.3	173	4.0	G 1 1/2-25	62	60
020322	20	322.5	74.7	72	289	387/102.2	86	4.0	G 1 1/2-25	62	70
020430	20	430.0	74.7	96	289	516/136.3	115	4.0	G 1 1/2-25	62	70
020538	20	537.6	74.7	120	290	645/170.4	144	4.0	G 1 1/2-25	62	70
016645	16	645.1	74.7	144	232	774/204.5	173	4.0	G 1 1/2-25	62	70
014475	14	475.1	110.0	72	202	571/150.8	86	4.0	G 2 1/4-40	68	85
014634	14	634.1	110.0	96	202	761/201.0	115	4.0	G 2 1/4-40	68	85
013793	13	792.6	110.0	120	189	951/251.2	144	4.0	G 2 1/4-40	68	85
011951	11	951.1	110.0	144	160	1,141/301.4	173	4.0	G 2 1/4-40	68	85

Other gear reduction ratios are available upon request.

The permissible admission pressure on the suction side is approx. 50% of the max. permissible back pressure.

 ** The suction and discharge connectors Rp 1/4 and Rp 3/8 are inner threaded and fitted with double ball valves.

Materials in Contact With the Medium

Pump type	Hydraulic Ø mm	Dosing head connection	Suction/ discharge seals	Ball seat	Valve balls	Plunger
SST	12 S to 30 S	Stainless steel 1.4571/ 1.4404	1.4571/1.4404	SS/PTFE	Oxide ceramics	Stainless steel/ ceramic
SST	40 S to 70 S	Stainless steel 1.4571/ 1.4404	1.4581	PTFE/PTFE	Oxide ceramics	Stainless steel/ ceramic
SST	85 S	Stainless steel 1.4571/ 1.4404	1.4581	PTFE/PTFE	1.4404 (plate) Hast. C (spring)	Stainless steel/ ceramic

ProMinent

2.18 Plunger Metering Pump Makro TZ

2.18.2

Identity Code Ordering System TZKa

Plunger metering pump TZKa

TZKa	Drive 1	type														
	Н	Main dri	ive													
	Α	Add-on														
	D	Double	main dri	ve												
	В	Double														
	٦	Type*	add on													
		320009		320030		113057		063174		028237		020538				
		320003		313035		113077		052208		028316		016645				
		320012		192033		113077		040163		027395		014475				
		320014		192033		096115		040217		027393		014473				
		320017		192044		063104				020322		014634				
		320018		168066				040271		020322						
		320024				063139		033326		020430		011951				
				end ma												
			SS	Stainles												
				Sealing		al										
				Т	PTFE											
							ement body Stainless steel plunger, chromium dioxide-coated									
					S				hromiun	n dioxide-	coated					
						Liquid e										
						0		e spring								
						1		alve sprir								
								ulic con								
							0	Standar								
							4	SS unio	n nut an	id insert						
								Version								
								0		roMinent [©]						
								2		t ProMine						
								Α		roMinent [®]	0 ,					
								В		roMinent [®]						
								С	With P							
								M	Modifie							
									Electri	cal powe	er supp	ly				
									S	3 ph. 230	0/400 V	50/60 H	z (WBS)			
									R	Variable	speed i	motor 4-p	oole 230	/400 V		
									V (0)	Variable	speed i	notor wit	h integr	. frequency converter		
									Z P	1 ph, var	riable sp	eed con	trol set 1	I ph, 230 V, 50/60 Hz		
									Р	3 ph. 230	0/400 V	60 Hz (E	xe, Exd)		
									L	3 ph. 230	0/400 V	50 Hz (E	xe, Exd)		
									V (2)	With inte	grated	frequenc	y conve	rter (Exd)		
									4	No moto	r, with 5	6 C flang	ge			
									7	No moto	r, with 1	20/80 fla	ange			
									8	No moto	r, with 1	60/90 fla	inge			
									0	Without	motor, e	externally	mounte	ed drive		
										Enclosu	re ratir	ng				
										0	IP 55 (Standard	l) ISO cl	ass F		
										1	Exe ve	rsion AT	EX-T3			
										2	Exd ve	rsion AT	EX-T4			
										Α	ATEX	ower en	nd			
											Stroke	sensor				
											0	No strol		or		
											1	With str	oke sen	sor (Namur)		
														adjustment		
												0	Stroke	length adjustment, man.		
												1		stroke adjustment motor		
												2		stroke adjustment motor		
												3		0-20 mA stroke controller		
												4		4-20 mA stroke controller		
												5		0-20 mA stroke controller		
												6		4-20 mA stroke controller		
												٦				
													Applic 0	Standard		
													U	Standard		

* Digits 1 - 3=back pressure [bar]; digits 4 - 6=feed rate [l/h]

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	1.5 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	2.2 kW	With PTC, speed adjustment range 1:20 with external fan 1 ph 230 V; 50/60Hz
V0	3 ph, IP 55	400 V ±10%	50/60 Hz	2.2 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExelIT3	220-240 V/380-420 V	50 Hz	1.5 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	1.5 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExelIT3	250-280 V/440-480 V	60 Hz	1.5 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	1.5 kW	With PTC, speed control range 1:5
V2	3 ph, II2GEExdIICT4	400 V ±10%	50/60 Hz	2.2 kW	Ex-variable speed motor with integrated frequency converter

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.18.3 Spare Parts Kits

Spare Parts Kits for Plunger Metering Pump Makro TZ

Comprising:

Valve balls

Valve plate with spring

Ball seat discs

PTFE/graphite plunger packing rings

Plunger guides

Flat seals/O rings

	Order no.
Spare parts kit for Makro TZ FK 12/20 S DN 8	1019106
Spare parts kit for Makro TZ FK 17/20 S DN 8	1019107
Spare parts kit for Makro TZ FK 23/20 S DN 10	1019108
Spare parts kit for Makro TZ FK 30/20 S DN 10	1019109
Spare parts kit for Makro TZ FK 40/20 S DN 20	1019110
Spare parts kit for Makro TZ FK 50/20 S DN 20	1019111
Spare parts kit for Makro TZ FK 60/20 S DN 25	1019112
Spare parts kit for Makro TZ FK 70/20 S DN 25	1019113
Spare parts kit for Makro TZ FK 85/20 S DN 40	1019124

2.19.1

Plunger Metering Pump Makro/ 5

Powerful, built to last with a plunger

Capacity range of single pump: 38 - 6,014 l/h, 320 - 6 bar

1

The plunger metering pump Makro/ 5 can virtually be used throughout the low-pressure range and its modular construction enables it to be outstandingly adapted to the performance requirements of the respective application.

pk_2_075 Makro/ 5 M5Ka

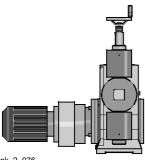
The plunger metering pump Makro/ 5 (M5ka) together with the Makro/ 5 hydraulic diaphragm and plunger metering pumps form a range of drive mechanisms with stroke lengths of 20 and/or 50 mm. This covers the capacity range from 38 to 6,108 l/h at 320 – 4 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Your benefits

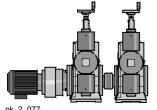
Process reliability:

■ Metering reproducibility is better than ± 0.5 % within the 10 – 100% stroke length range under defined conditions and with correct installation

Excellent flexibility:


- The modular construction with single and double head versions permits a wide range of applications, with the double head designs being operated in push-pull mode
- It is possible to combine up to 4 metering units, even with different pump capacities, in multiple pump systems
- 5 different gear ratios are available
- Customised designs are available on request

Technical Details


- Stroke length: 0-50 mm, Rod force: 10,000 N
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display in 0.5% increments (optionally with electric control drive)
- Metering reproducibility is better than ± 0.5 % within the 10 100% stroke length range under defined conditions and with correct installation. Observe the information in the operating instructions
- High-performance ceramic-coated stainless steel plunger
- Wetted materials: Stainless steel 1.4571, special materials are available on request
- A wide range of power end versions is available: three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Salt water-resistant, acrylic resin-coated cast aluminium housing
- Provide suitable overload protection in all plunger metering pumps during installation for safety reasons

Field of application

- Volume-proportional metering of chemicals/additives in water treatment
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of additives in industrial production engineering

pk_2_076 Makro/ 5 M5Ka

Makro/ 5 M5Ka externally mounted pump

pk_2_078 Makro/ 5 double head pump

Makro/ 5 Pump Control

Stroke length variable speed drive Makro/ 5

Variable speed drive consisting of actuator with motor actuator and integrated microprocessor controller for stroke length adjustment via a standard signal. Actuating time approx. 100 sec. for 100% stroke length, equipped with 2 limit switches for min./max. position, IP rating: IP 52. Electrical connection 230 V (±10%), 50/60 Hz, approx. 40 W, mech. stroke position indicator present at drive Makro/ 5.

Special voltage/higher IP ratings/Ex protection on request.

Standard current input 0/4-20 mA (corresponds to stroke length 0-100%); internal switch for manual/ automatic operation, key switch for stroke adjustment in manual operation mode. Actual value output 0/4-20 mA for remote display.

Frequency converter for speed control in metal housing, IP rating 54

Frequency converter installed in protective housing IP 54 with integrated control unit and main switch suitable for the motor output stated in the following.

Externally controllable with 0/4-20 mA or 0-10V corresponding to 0-50 (60) Hz output frequency.

Integrated control unit with numerous functions, such as toggling external/internal control. With internal control, frequency setting is via arrow keys, error message on multi lingual display etc.

Including evaluator for temperature monitoring of the motor (thermistor protection).

Stroke sensor with namur signal

Mounted on the crank drive of the Makro/5 gearbox. For precise detection of each metering stroke, consisting of actuating cams and inductive proximity switch, switching signal according to Namur. Combined with electronic preselection counters suitable for batch metering or proportional metering in connection with the proportional control.

Retrofitting is only possible on factory premises.

Approved for ex-proof operation with IP rating EEx ia II C T6.

Technical Data

Type M5Ka	With 1500 rpm motor at 50 Hz				Wi	th 1800	rpm mo	otor at 60 Hz	Suction lift	Connection, suction/ discharge side	Shipping weight	Plunger Ø
			ry rate at	Max.		Delivery rate at Max max. back pressure stroke rate						
	max bar	ι. bacκ ∣ I/h	pressure ml/	stroke rate Strokes/	max.	раск pro I/h	essure gph	stroke rate Strokes/	m WC	G-DN	kg	mm
			stroke	min			(US)	min				
3200038	320	38	11	60	4,640	44	12	71	3.0	Rp 1/4–8	300	17
3200048	320	48	11	75	4,640	56	15	89	3.0	Rp 1/4–8	300	17
3200066	320	66	11	103	4,640	78	21	123	3.0	Rp 1/4–8	300	17
3200085	320	85	11	133	4,640	101	27	159	3.0	Rp 3/8–10	300	17
3200100	320	100	11	156	- 400	-	-	-	3.0	Rp 3/8–10	300	17
2400070 2400088	240 240	70 88	21 21	60 75	3,480	82 104	22 27	71 89	3.0	Rp 3/8–10 Rp 3/8–10	300 300	23 23
2400088	240	121	21	103	3,480	144	38	123	3.0	Rp 3/8–10	300	23
2160157	216	157	21	133	3,132	187	49	159	3.0	Rp 3/8–10	300	23
1700184	170	184	21	156	-	-	-	-	3.0	G 1–15	300	23
1400120	140	120	35	60	2,030	142	38	71	3.0	G 1–15	302	30
1400151	140	151	35	75	2,030	179	47	89	3.0	G 1–15	302	30
1400207	140	207	35	103	2,030	247	65	123	3.0	G 1–15	302	30
1270267	127	267	35	133	1,842	319	84	159	3.0	G 1 1/4-20	302	30
1000314	100	314	35	156	_	-	-	-	3.0	G 1 1/4-20	302	30
0800214	80	214	63	60	1,160	253	67	71	3.0	G 1 1/4-20	303	40
0800268	80	268	63	75	1,160	318	84	89	3.0	G 1 1/4–20	303	40
0800368	80	368	63	103	1,160	439	116	123	3.0	G 1 1/4-20	303	40
0700476	70	476	63	133	1,015	569	150	159	3.0	G 1 1/2-25	303	40
0560558	56	558	63	156	_	-	-	-	3.0	G 1 1/2–25	303	40
0500335	50	335	98	60	725	396	105	71	3.0	G 1 1/2–25	303	50
0500419	50	419	98	75	725	497	131	89	3.0	G 1 1/2–25	303	50
0500576	50	576	98	103	725	687	181	123	3.0	G 1 1/2–25	303	50
0450744	45	744	98	133	653	889	235	159	3.0	G 2–32	303	50
0350872	35	872	98	156	_		-		3.0	G 2–32	303	50
0350483	35	483	141	60	508	571	151	71	3.0	G 1 1/2–25	311	60
0350604	35	604	141	75	508	716	189	89	3.0	G 1 1/2–25	311	60
0350829 0301071	35 30	829 1,071	141 141	103 133	508 435	989 1,280	261 338	123 159	3.0	G 2–32 G 2–32	311	60 60
0251257	25	1,071	141	156	433	1,200	-	-	3.0	G 2-32	311 311	60
0250658	25	658	192	60	363	778	206	71	3.0	G 2–32	311	70
0250822	25	822	192	75	363	975	258	89	3.0	G 2-32	311	70
0251129	25	1,129	192	103	363	1,348	356	123	3.0	G 2-32	311	70
0231458		1,458	192	133	334	1,743	460	159	3.0	G 2 1/4-40	311	70
0181710	18	1,710	192	156	_	_	_	_	3.0	G 2 1/4–40	311	70
0160970	16	970	284	60	232	1,147	303	71	3.0	G 2 1/4-40	317	85
0161212	16	1,212	284	75	232	1,438	380	89	3.0	G 2 1/4-40	317	85
0161665	16	1,665	284	103	232	1,988	525	123	3.0	G 2 1/4-40	317	85
0162150	16	2,150	284	133	232	2,570	679	159	3.0	G 2 3/4-50	317	85
0162522	16	2,522	284	156	-	-	-	-	3.0	G 2 3/4-50	317	85
0121343	12	1,343	393	60	174	1,589	420	71	3.0	G 2 3/4-50	331	100
0121678	12	1,678	393	75	174	1,991	526	89	3.0	G 2 3/4-50	331	100
0122305	12	2,305	393	103	174	2,752	727	123	3.0	G 2 3/4-50	331	100
0122977	12	2,977	393	133	174	3,558	940	159	3.0	G 2 3/4–50	331	100
0103491	10	3,491	393	156	_	_	_	-	3.0	G 2 3/4–50	331	100
0062269	6	2,269	664	60	87	2,684	709	71	3.0	G 2 1/2–65	350	130
0062837	6	2,837	664	75	87	3,366	889	89	3.0	G 2 1/2–65	350	130
0063896	6	3,896	664	103	87	4,652	1,229	123	3.0	G 2 1/2–65	350	130
0065031	6	5,031	664	133	87	6,014	1,589	159	3.0	G 2 1/2-65	350	130
0066000	6	6,000	664	156	-	-	-	-	3.0	G 2 1/2–65	350	130

2.19.2

Identity Code Ordering System for M5Ka

Plunger metering pump Makro/ 5

M5Ka	Drive	tvne										
WIJNA	H	Main drive										
	A	Add-on po										
	D	Double ma	in drive									
	В	Double ad	d-on pow	ver end								
		Type*										
		3200038	ĺ	1400120		0500335		0250658		0121343		
		3200048		1400151		0500003		0250822		0121678		
		3200066		1400207		0500576		0251129		0122305		
		3200085		1270267	0450744		0231458		0122977			
		3200100		1000314		0350872		0181710		0103491		
		2400070		0800214	300214	0350483		0160970		0062269		
		2400088		0800268		0350604 0350829		0161212		0062837		
		2400121		0800368				0161665		0063896		
		2160157		0700476 0560558		0301071		0162150		0065031		
		1700184				0251257		0162522		0066000		
			Liquid	end mate	rial							
				Stainless								
				Sealing n		*						
					PTFE							
				'								
						cement b						
					S	Stainless	steel pl	unger, chr	omium c	lioxide-coa	ated	
						Liquid er	nd versi	ion				
						0	No val	e springs				
						1	With va	alve spring	s			
						-		ulic conne				
							0	l Standard		tion		
							4	4 SS union		ınsert		
							Version					
								0	With P	roMinent®	logo, no	o frame
								2		Minent® Id		
							A			0 /	ith frame, simplex	
								В			•	ith frame, duplex
								С				ith frame, triplex
								D	With P	roMinent®	logo, w	ith frame, quadruplex
								M	Modifie	ed		
									Flectri	cal powe	r sunnl	V
									S			50/60 Hz (WBS)
												* *
									R		•	notor 4-pole 230/400 V
									V (0)		_	ated frequency converter
									Р	3 ph. 230	/400 V 6	60 Hz (Exe, Exd)
									L	3 ph. 230	/400 V 5	50 Hz (Exe, Exd)
									V (2)			ated frequency converter (Exd)
									5			C 100 gearbox
									6			C 112 gearbox
									0	No motor	, no gea	arbox
	1						1		1	Enclosu	re ratin	g
	1						1		1	0	IP 55 (Standard) ISO class F
	1						1		1	1		rsion ATEX-T3
	1						1		1	2		rsion ATEX-T4
	1						1		1	-		
	1						1		1	Α		power end
	1						1		1		Stroke	esensor
	1						1		1		0	No stroke sensor
	1						1		1		1	With stroke sensor (Namur)
	1						1		1			Stroke length adjustment
	1						1		1			
												1
	1						1		1			3 230 V 0-20 mA stroke controller
					I	1				1		4 230 V 4-20 mA stroke controller
	1						1		1			5 115 V 0-20 mA stroke controller
	1						1		1			6 115 V 4-20 mA stroke controller
	1						1		1			
	1						1		1			G Control drive 230 V 0-20 mA Exde
	1						1		1			H Control drive 230 V 4-20 mA Exde
	1						1		1			Application
	1						1		1			0 Standard
	1						1		1			3 Temperature up to -20 °C
												. s.inportaturo ap to 20 o

^{*} Digits 1 - 3=back pressure [bar]; digits 4 - 7=feed rate [l/h]

Process Metering Pumps

2.19 Plunger Metering Pump Makro/ 5

Materials in Contact With the Medium

	Liquid end	Suction/pressure connector	Valve seat/ seals	Valve balls	Plunger
Makro 5/50 HKDN 8-DN 10	Stainless steel 1.4571/ 1.4404	1.4571/1.4404	SS/PTFE	Oxide ceramics	Stainless steel/ ceramic
Makro 5/50 HKDN 15-DN 25	Stainless steel 1.4571/ 1.4404	1.4581	PTFE/PTFE	Stainless steel 1.4401	Stainless steel/ ceramic
Makro 5/50 HKDN 32-DN 65	Stainless steel 1.4571/ 1.4404	1.4581/1.4404	PTFE/PTFE	Stainless steel 1.4404 (plate/ spring)	Stainless steel/ ceramic

The permissible priming pressure on the suction side is approx. 50% of the max. permissible back pressure.

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	3 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	3 kW	With PTC, speed control range 1:5
V0	3 ph, IP 55	400 V ±10%	50/60 Hz	3 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExelIT3	220-240 V/380-420 V	50 Hz	3.6 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	4 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExelIT3	250-280 V/440-480 V	60 Hz	3.6 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	4 kW	With PTC, speed control range 1:5
V2	3 ph, II2GEExellCT4	400 V ±10%	50/60 Hz	4 kW	Ex-variable speed motor with integrated frequency converter

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2009/125/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.19.3 **Spare Parts Kits**

Spare parts kit for Makro/ 5, consisting of:

- Valve balls
- Valve plate with spring
- Ball seat discs
- Plunger packings made from PTFE/graphite
- Piston guide bands
- Flat seals / O-rings

	Order no.
Spare parts kit for Makro/ 5 FK 17/50 S DN 8	1005899
Spare parts kit for Makro/ 5 FK 17/50 S DN 10	1005536
Spare parts kit for Makro/ 5 FK 23/50 S DN 10	1005004
Spare parts kit for Makro/ 5 FK 23/50 S DN 15	1005900
Spare parts kit for Makro/ 5 FK 30/50 S DN 15	1005901
Spare parts kit for Makro/ 5 FK 30/50 S DN 20	1005537
Spare parts kit for Makro/ 5 FK 40/50 S DN 20	1005902
Spare parts kit for Makro/ 5 FK 40/50 S DN 25	1005538
Spare parts kit for Makro/ 5 FK 50/50 S DN 25	1005539
Spare parts kit for Makro/ 5 FK 60/50 S DN 25	1005903
Spare parts kit for Makro/ 5 FK 60/50 S DN 32	1005540
Spare parts kit for Makro/ 5 FK 70/50 S DN 32	1005541
Spare parts kit for Makro/ 5 FK 70/50 S DN 40	1005904
Spare parts kit for Makro/ 5 FK 85/50 S DN 40	1005542
Spare parts kit for Makro/ 5 FK 85/50 S DN 50	1005905
Spare parts kit for Makro/ 5 FK 100/50 S DN 50	1005543
Spare parts kit for Makro/ 5 FK 130/50 S DN 65	1005544

2.20 Plunger Metering Pump Orlita® PS

2.20.1

Plunger Metering Pump Orlita® PS

Orlita® PS - simple, robust and reliable.

Capacity range of single pump: 0 - 37,000 l/h, 400 - 4 bar

The high-performance plunger metering pump ORLITA® PS enables precise pump capacities even at maximum pressure and temperatures of up to +400 °C. The ORLITA® PS pump has a modular construction and thus versatile uses.

ORLITA® PS plunger metering pumps (PS 18 to PS 1400) with a stroke length of 15 to 60 mm provide a capacity ranging from 0 to 37,000 l/h at 400 - 4 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification. The Orlita® PS product range is designed to comply with API 675. Its modular construction permits the free combination of drives, power ends and dosing heads, producing a pump for a range of different feed rates and media operating at different working

Your benefits

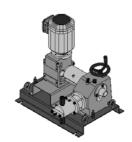
Flexible adaptation to the process:

- Precise capacity even at maximum pressure
- Metering reproducibility is better than ± 0.5 % within the 10-100% stroke length range under defined conditions and with correct installation.
- Cone valves for use as suction and/or discharge valves with minimal wear, good self-cleaning and low pressure loss (NPSHR)
- Excellent hydraulic efficiency

Excellent flexibility:

- The modular construction ensures a wide range of uses
- It is possible to combine up to 6 metering units, even with different pump capacities, in multiple pump systems
- 6 different gear ratios are available
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Customised designs are available on request

Technical Details


- PS 18 Stroke length: 0-15 mm, Rod force: 1,750 N
- PS 35 Stroke length: 0-20 mm, Rod force: 3,500 N
- PS 80 Stroke length: 0-20 mm, Rod force: 14,000 N
- PS 180 Stroke length: 0-40 mm, Rod force: 18,000 N
- PS 600 Stroke length: 0-40 mm, Rod force: 40,000 N
- PS 1400 Stroke length: 0-60 mm, Rod force: 60,000 N
- Stroke length adjustment range: 0 100% in operation and idle
- The plunger packing can be tightened by the tensioning screw on the front even during operation
- Metering reproducibility is better than ± 0.5 % within the 10 100% stroke length range under defined conditions and with correct installation
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Temperature range 40 °C to + 400 °C
- Design in compliance with API 675 among others

Field of application

- Oil/ gas production (onshore/offshore)
- Refineries
- Chemical/Petrochemical industry
- Pharmaceuticals & cosmetics
- Packaging industry (bottling pumps)
- Maximum temperature applications of up to +400 °C

P ORL 071 SW1 Orlita® PS 18-36

P_ORL_072_SW1 Orlita® PS 80-30

P_ORL_073_SW1 Orlita® PS 18-12 high-temperature

P ORL 074 SW1 Orlita® PS 35-7-7

P OBI 075 SW1 Orlita® PS 600-40-40-40

Process Metering Pumps

2.20 Plunger Metering Pump Orlita® PS

Pump type	Plunger Ø	Stroke volume		in I/h at (50 Hz)	Max. pressure				
			58	73	91	112	145	207	
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar
PS 18/	5	0.29	1.0	1.2	1.6	1.9	2.5	3.6	250
PS 18/	6	0.42	1.4	1.8	2.3	2.8	3.6	5.2	250
PS 18/	7	0.58	2.0	2.5	3.1	3.8	5.0	7.1	250
PS 18/	8	0.75	2.6	3.2	4.1	5.0	6.5	9.3	250
PS 18/	10	1.18	4.1	5.1	6.4	7.8	10.2	14.6	200
PS 18/	12	1.70	5.9	7.3	9.2	11.3	14.7	21.0	139
PS 18/	16	3.02	10.5	13.1	16.4	20.1	26.2	37.4	78
PS 18/	20	4.71	16.4	20.5	25.6	31.5	41.0	58.5	50
PS 18/	25	7.36	25.6	32.0	40.0	49.2	64.0	91.5	32
PS 18/	30	10.60	36.9	46.1	57.6	70.9	92.2	131.7	16
PS 18/	36	15.27	53.1	66.4	83.0	102.1	132.8	189.7	15
PS 18/	40	18.85	65.6	82.0	102.4	126.1	163.9	234.2	10
PS 18/	50	29.45	102.4	128.1	160.1	197.1	256.2	366.0	8

Pump type	Pump type Plunger Strok			Max. capacity (theo.) in I/h at strokes/min (50 Hz)							
			58	73	91	112	145	207			
	mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	bar		
		stroke									
PS 35/	7	0.77	2.6	3.3	4.1	5.1	6.7	9.5	630		
PS 35/	8	1.01	3.5	4.3	5.4	6.7	8.7	12.4	400		
PS 35/	10	1.57	5.4	6.8	8.5	10.5	13.6	19.5	400		
PS 35/	12	2.26	7.8	9.8	12.3	15.1	19.6	28.1	250		
PS 35/	16	4.02	13.9	17.4	21.8	26.9	34.9	49.9	156		
PS 35/	20	6.28	21.8	27.3	34.1	42.0	54.6	78.0	100		
PS 35/	25	9.82	34.1	42.7	53.3	65.7	85.4	122.0	64		
PS 35/	30	14.14	49.2	61.5	76.8	94.6	122.9	175.7	44		
PS 35/	36	20.36	70.8	88.5	110.6	136.2	177.1	253.0	30		
PS 35/	40	25.13	87.4	109.3	136.6	168.2	218.6	312.3	25		
PS 35/	50	39.27	136.6	170.8	213.5	262.8	341.6	488.0	16		
PS 35/	65	66.37	230.9	288.6	360.8	444.1	577.3	824.8	9		
PS 35/	80	100.53	349.8	437.3	546.6	672.7	874.6	1,249.4	6		
PS 35/	100	157.08	546.6	683.3	854.1	1,051.2	1,366.5	1,952.2	4		

Pump type	Plunger Ø	Stroke volume		Max. capacity (theo.) in I/h at strokes/min (50 Hz)								
			78	98	122	134	155	182	193			
	mm	ml/ stroke	I/h	l/h	l/h	l/h	l/h	l/h	l/h	bar		
PS 80/	20	6.28	29	37	46	50	58	68	72	400		
PS 80/	25	9.82	45	57	71	79	91	107	113	250		
PS 80/	30	14.14	66	83	103	113	131	154	163	178		
PS 80/	36	20.36	95	119	149	164	189	222	235	123		
PS 80/	40	25.13	117	148	184	202	233	274	290	100		
PS 80/	50	39.27	183	231	287	316	365	428	453	64		
PS 80/	60	56.55	264	333	414	455	526	617	653	44		
PS 80/	65	66.37	310	390	486	535	617	724	766	37		
PS 80/	80	100.53	470	592	736	810	935	1,097	1,161	25		
PS 80/	100	157.08	734	925	1,150	1,266	1,461	1,714	1,814	16		
PS 80/	125	245.44	1,148	1,445	1,797	1,978	2,283	2,679	2,835	10		
PS 80/	140	307.88	1,440	1,813	2,254	2,482	2,864	3,360	3,557	8		
PS 80/	160	402.12	1,880	2,368	2,944	3,242	3,741	4,389	4,646	6		

Important note:

All performance data is stated at 50 Hz motor frequency

Abridged presentation of our complete product range. Other types on request

2.20 Plunger Metering Pump Orlita® PS

Pump type	Plunger Ø	Stroke volume	Мах. с	Max. capacity (theo.) in I/h at strokes/min (50 Hz									
			107	117	134	152	171	200					
	mm	ml/ stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar				
PS 180/	30	28.27	181	199	226	257	290	339	229				
PS 180/	36	40.72	262	286	326	370	417	489	159				
PS 180/	40	50.27	323	353	403	457	515	604	125				
PS 180/	50	78.54	505	552	630	714	805	943	80				
PS 180/	54	91.61	589	644	735	833	939	1,100	70				
PS 180/	65	132.73	854	934	1,065	1,207	1,361	1,594	48				
PS 180/	70	153.94	990	1,083	1,235	1,400	1,579	1,849	40				
PS 180/	80	201.06	1,293	1,415	1,613	1,829	2,062	2,416	32				
PS 180/	94	277.59	1,786	1,953	2,227	2,526	2,847	3,335	23				
PS 180/	125	490.87	3,158	3,455	3,939	4,467	5,036	5,898	13				
PS 180/	140	615.75	3,962	4,334	4,941	5,603	6,317	7,399	10				
PS 180/	160	804.25	5,175	5,660	6,454	7,318	8,251	9,664	8				
PS 180/	200	1,256.64	8,086	8,845	10,085	11,435	12,892	15,100	5				

Pump type	Plunger Ø	Stroke volume	Max. ca	Max. capacity (theo.) in I/h at strokes/min (50 Hz									
			99	117	134	156	173	204					
	mm	ml/ stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar				
PS 600/	30	28.27	168	198	227	264	293	345	400				
PS 600/	36	40.27	242	285	327	381	422	497	353				
PS 600/	40	50.27	299	352	403	470	521	614	286				
PS 600/	50	78.54	467	551	630	735	814	959	183				
PS 600/	54	91.61	545	643	735	857	949	1,119	157				
PS 600/	65	132.73	789	932	1,067	1,243	1,376	1,621	100				
PS 600/	70	153.94	916	1,080	1,236	1,441	1,596	1,880	93				
PS 600/	80	201.06	1,196	1,411	1,616	1,882	2,084	2,456	71				
PS 600/	94	277.59	1,651	1,949	2,229	2,599	2,878	3,391	51				
PS 600/	125	490.87	2,921	3,446	3,946	4,596	5,090	5,998	29				
PS 600/	140	615.75	3,664	4,323	4,951	5,766	6,385	7,523	23				
PS 600/	160	804.25	4,785	5,647	6,466	7,531	8,339	9,827	16				
PS 600/	200	1,256.64	7,477	8,823	10,104	11,768	13,030	15,354	11				

Pump type	Plunger Ø	Stroke volume	Max. c	Max. capacity (theo.) in I/h at strokes/min (50 Hz)									
			93	106	125	143	169	191					
	mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	bar				
		stroke											
PS 1400/	40	75.40	419	480	565	647	766	864	400				
PS 1400/	50	117.81	654	750	884	1,011	1,197	1,350	275				
PS 1400/	60	169.65	943	1,080	1,273	1,456	1,724	1,944	190				
PS 1400/	70	230.91	1,283	1,470	1,733	1,983	2,346	2,646	140				
PS 1400/	80	301.59	1,676	1,920	2,263	2,590	3,065	3,456	107				
PS 1400/	94	416.39	2,314	2,651	3,125	3,576	4,231	4,772	77				
PS 1400/	125	736.31	4,093	4,689	5,527	6,323	7,483	8,439	44				
PS 1400/	140	923.63	5,134	5,882	6,933	7,932	9,387	10,587	35				
PS 1400/	160	1,206.37	6,706	7,683	9,055	10,360	12,261	13,827	25				
PS 1400/	200	1,884.96	10,478	12,005	14,149	16,188	19,157	21,606	17				
PS 1400/	280	3,694.51	20,538	23,530	27,732	31,729	37,549	42,348	8				

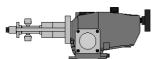
Important note:

All performance data is stated at 50 Hz motor frequency

Abridged presentation of our complete product range. Other types on request

2.21 Plunger Metering Pump Orlita® DR

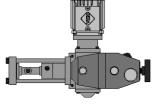
2.21.1


Plunger Metering Pump Orlita® DR

For the precise metering of high-viscosity and extremely high-viscosity media even containing solid fractions

Capacity range of single pump: 0 - 4,000 l/h, 400 - 4 bar

The plunger metering pump Orlita® DR does not need valves and can be operated within a broad stroke rate range. It is therefore suitable for use with high-viscosity and extremely high-viscosity media of up to 106 mPas within a wide temperature range from -40 °C to 400 °C, for example in the food industry.

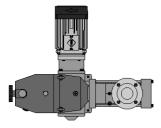

P ORL 0020 SW Orlita® DR

Orlita® DR plunger metering pumps (DR 15 to DR 150) are special pumps for high-viscosity and extremely high-viscosity media, which can also contain solids. The pump can be operated within a broad stroke rate range due to its operation without valves.

Your benefits

Optimum adaptation to processes with high-viscosity and extremely high-viscosity media, even containing solid fractions:

- Low-wear and precise operation even at high pressures, thanks to the rotary plunger with abrasionresistant / wear-resistant surface coating
- Valve-free operation guarantees a broad stroke rate range
- Wide range of uses: Operating pressure of up to 400 bar, temperature range of 40 $^{\circ}$ C to + 400 $^{\circ}$ C
- Pump direction can be selected depending on the fitting position of the plunger
- A reverse suction effect is continuously adjustable by rotating the pump head around its longitudinal axis
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Excellent hydraulic efficiency
- 4 different gear ratios are available
- Customised designs are available on request


P ORL 0021 SW Orlita® DR 15/12

P_ORL_0022_SW

Orlita® 150/90

Technical Details

- DR 15 Stroke length: 0-15 mm, Rod force: 1,800 N
- DR 150 Stroke length: 0-32 mm, Rod force: 15,000 N
- Stroke length adjustment range: 0 100% in operation and idle
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 0.5% within the stroke length adjustment range of 10 to 100% under defined conditions and with proper installation
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Temperature range 40 °C to + 400 °C
- The interplay between the plunger and cylinder responsible for the sealing effect, is selected depending on the viscosity
- Turret on the rear head end as a circular collecting vessel
- The turret is sealed by elastomer lip sealing rings
- Design in compliance with API 675 among others

P ORL 0023 SW Orlita® DR 150/90

Field of application

Metering of high-viscosity and extremely high-viscosity media containing some solid fractions, for example in the food industry.

Process Metering Pumps

2.21 Plunger Metering Pump Orlita® DR

Pump type	Plunger Ø	Stroke volume	Capacity max	. (theo.) in I/h	at strokes/min (50 Hz)	Max. pressure
			58	77	116	
	mm	ml/stroke	I/h	l/h	l/h	bar
DR 15/	7	0.58	2.0	2.6	4.0	400
	12	1.70	5.9	7.8	11.8	159
	18	3.82	13.2	17.7	26.5	70
	25	7.36	25.6	34.1	51.2	36
	36	15.27	53.1	70.8	106.2	17
	50	29.45	102.4	136.6	204.9	9
	70	57.73	200.8	267.8	401.7	4

Pump type	Plunger Ø	Stroke volume	Capacity r	rokes/min (50 Hz)	Max. pressure		
			58	77	116	145	
	mm	ml/stroke	l/h	l/h	l/h	l/h	bar
DR 150/	12	3.62	12.5	16.7	25.1	31.4	400
	18	8.14	28.3	37.7	56.6	70.8	400
	25	15.71	54.6	72.8	109.3	136.6	250
	36	32.57	113.3	151.1	226.7	283.3	147
	50	62.83	218.6	291.5	437.3	546.6	76
	70	123.15	428.5	571.4	857.1	1,071.4	38
	90	203.58	708.4	944.5	1,416.8	1,771.1	23
	120	361.91	1,259.4	1,679.2	2,518.9	3,148.6	13
	140	492.60	1,714.2	2,285.6	3,428.5	4,285.6	9

Important note:

All performance data is stated at 50 Hz motor frequency

Abridged presentation of our complete product range. Other types on request

2.22 Diaphragm Process Pump Zentriplex

2.22.1

Diaphragm Process Pump Zentriplex

The innovative process metering pump with the ideal dimensions and excellent efficiency. Capacity range 424 - 8,000 l/h, 367 - 36 bar

The Zentriplex guarantees excellent performance and provides outstanding efficiency as an oscillating triplex process diaphragm pump, with an extremely small footprint thanks to the space-saving arrangement of the pump and drive unit. It also stands out on account of its efficiency, as minimal material and labour are required.

The Zentriplex is an oscillating process diaphragm metering pump, which has a very small footprint thanks to its unconventional design, as the pump and drive unit are mounted above each other to save space. Diaphragm dosing heads and hydraulic units are arranged in a star pattern around the drive unit, resulting in minimised loads and significantly lower material and drive requirements. The Zentriplex is designed in compliance with API 674.

Your benefits

Excellent conservation of resources:

- Excellent energy efficiency.
- Diaphragm replacement without dismantling the suction and discharge lines ensures cost-effective maintenance of the pump
- Low noise emissions
- Very quiet thanks to complete balancing of masses
- Only one connection required by the customer. Collective discharge and suction lines are integrated in the pump
- Low flow rate pulsation
- Customised designs are available on request

P PZ 0009 SW1 Process diaphragm pump Zentriplex (1= customer-side connection)

Technical Details

- Stroke length: 40 mm, Rod force: 18,000 N fixed stroke pump
- Metering reproducibility is better than ± 1% under defined conditions and with proper installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of motor versions is available: Three-phase standard motors with varied adjustment ranges, motors for use in Exe and Exde areas, different flange designs for use in customer-specific
- Degree of protection: IP 55
- Design in compliance with API 674

Field of application

- Chemical industry
- Petrochemical industry
- Refineries
- Oil and gas industry

Process Metering Pumps

2.22 Diaphragm Process Pump Zentriplex

Technical Data

Plunger Ø	Stroke volume		Theoretical pump capacity Q _{th} at a stroke rate n in rpm				Max. operating pressure	Efficiency at	Efficiency at	Standard type of valve
		120 [3]	145 [4]	170 [5]	200 [6]	220 [7]				
mm	ml/ stroke	1	l/h	l/h	l/h	l/h	bar	100% pressure	50% pressure	
-	25 58.90	424	512	601	707	778	367	0.78	0.83	DN 10
:	26 63.71	459	554	650	765	841	339	0.78	0.83	DN 10
;	30 84.82	611	738	865	1,018	1,120	255	0.81	0.85	DN 15
;	36 122.15	879	1,063	1,246	1,466	1,612	177	0.84	0.87	DN 20
•	44 182.46	1,314	1,587	1,861	2,190	2,409	118	0.85	0.88	DN 20
	60 339.29	2,443	2,952	3,461	4,072	4,479	64	0.90	0.92	DN 25
•	70 461.81	3,325	4,018	4,711	5,542	6,096	47	0.90	0.92	DN 32
:	80 603.19	4,343	5,248	6,152	7,238	7,962	36	0.90	0.92	DN 32

Important note:

Abridged presentation of our complete product range. Other types on request

Materials in Contact With the Medium

Dosing head compl	ete		Manifold					
Dosing head	Diaphragm retaining screw	Diaphragm	Suction/pressure connector	Seal, manifold				
Stainless steel 1.4404	Stainless steel 1.4462	PTFE multi-layer diaphragm	Stainless steel 1.4571	Viton O-ring with seamless FEP jacket				
	Ball valve DN	10						
Suction/pressure connector	Seal valve/head	Valve ball	Valve seat	Valve housing				
Stainless steel 1.457	1 Stainless steel 1.4571	Al ₂ O ₃ ceramic	Stainless steel 1.4404	Stainless steel 1.4404				
	Plate valve DN 15 / DN 20 / DN 25 / DN 32							
Suction/pressure connector	Seal valve/head	Valve plate	Valve seat	Valve housing				
Stainless steel 1.457	1 Stainless steel 1.4571	Stainless steel 1.4462	Stainless steel 1.4571	Stainless steel 1.4571				

Further material versions and details available on request.

Motor and Gearbox Data

Motors and gearboxes from 7.5 to 15 kW are available for the Zentriplex product range. Further options and details available upon request.

Standard gear motor 7.5 kW, 9.2 kW, 11 kW, 15 kW	3 ph, IP 55	400/690V	50/60 Hz	Control range 1:5
Ex gear motor EExde IICT4 11 kW, 15 kW	3 ph, IP 65	400/690V	50/60 Hz	Control range 1:5
Standard external gearbox 11 kW15 kW	IP 55			Version according to DIN/ISO standard flange
Standard external gearbox 11 kW15 kW	IP 55			NEMA flange version
Ex gearbox 2 IIGD c,k T4/T120C external 11 kW15 kW	IP 55			Version according to DIN/ISO standard flange
Ex gearbox 2 IIGD c,k T4/T120C external 11 kW15 kW	IP 55			NEMW flange version

Hydraulic/mechanical accessories

Hydraulic / mechanical accessories for metering pumps such as injection valves and foot valves, can be found in Chapter 1.5, sorted by nominal width DN $8\dots$ DN 40:

Please observe the permitted pressure ratings or material combinations when selecting. Further accessories are available on request.

Electrical accessories

Accessories for metering pumps, such as frequency converters etc., can be found in Chapter 1.6, sorted by motor capacity DN $8\dots$ DN 40.

2.23.1 Return/Pressure Relief Valve, Spring-loaded

Spring-loaded valves, inline version, designed as pump valves, i.e. to cope with a very high number of load cycles. Also suitable for use without pulsation damper.

Features:

- Female thread on both sides or with sealing surface
- For bracing between 2 flanges
- PN 200 or PN 400
- Settings factory-set
- Standard design in stainless steel, hastelloy also available on request, as is Inconel

Also available heatable on request.

DN	Adjustable pressure	Construction	Order no.
6	2.0 bar	Ball	1020074
6	4.0 bar	Ball	1019224
6	8.0 – 9.0 bar	Ball	1019097
10	2.0 bar	Cone, fixed	1019649
10	3.0 – 6.0 bar	Cone, adjustable	1023053
10	8.0 – 14.0 bar	Cone, adjustable	1024065
16	2.0 bar	Cone, fixed	1017937
16	3.0 bar	Cone, fixed	1035266
16	4.5 – 5.4 bar	Cone, fixed	1017936
25	1.0 – 2.0 bar	Cone, fixed	1021843

2.23.2

Safety Valve

P_AC_0231_SW

Regulations:

Safety valves are designed to comply with the following regulations:

- Pressurised Vessel and Steam Boiler Directive
- TRD 421, 721
- TRB 403
- AD 2000 Bulletins A2 and A4
- DIN EN ISO 4126
- Pressure Equipment Directive 97/23/EC
- ASME Code, Sections II and VIII
- API 526, 520, 527

The relevant product-specific certificates are available to prove compliance with these regulations and thus also the safety of the products.

Safety valves carry a parts label (specification label) stipulating the following data:

- Order date (serial no.)
- Technical data
- Set pressure
- VdTÜV Parts test number
- CE mark with number of nominated centre
- Further data, e.g. UV stamp with ASME-approved safety valves

Inspection / Labelling:

Following adjustment and inspection, every safety valve is sealed by the manufacturer.

Connectors: NPT threaded connectors, threaded sockets, flange mountings comply with DIN / ANSI. Other connections are available on request.

Material description	X 14 CrNiMo 17-12-2
Material no.	1.4404
ASME	316L

Dimensions, pressure ranges, weights	Standard 10 mm
Pressure rating at inlet	320 PN
Pressure rating at outlet	160 PN
Min. response pressure	0.1 bar
Max. response pressure (4373 / 4374)	68 bar
Narrowest flow cross-section	78.5 mm ²
Narrowest flow diameter	10 mm
Leg length (outlet / inlet)	30 mm / 33 mm
Pin length (G 1/2 / G 3/4)	15 mm / 16 mm
Flange design	100 mm
Height (H2 / H4)	137/162 mm
Weight	1.2 kg

P_AC_0232_SW

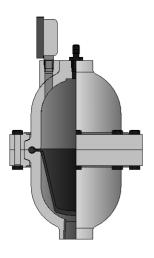
2.23.3

Pulsation Damper

Pulsation dampers with separating membrane / bubble / bellows for providing separation between the gas cushion and metered chemical are used for low-pulsation metering as well as for reducing flow resistance in long metering lines and with viscous media. The response pressure of the gas cushion should be approx. 60-80% of the operating pressure.

Important: A pressure relief valve should always be fitted with an adjustable back pressure valve when using a pulsation damper.

Bladder dampers, metal


0.066 - 379 | Volume Pressure 20.7 bar Material of bladder/diaphragm EPDM or FKM

Housing material 316 L stainless steel, Hastelloy C, PTFE

Further material versions and details available on request.

P_AC_0258_SW1

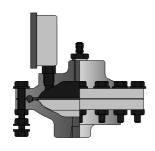
Bladder damper, plastic

P_AC_0259_SW1

Volume 0.066 - 19 | **Pressure** 17.2 bar Material of bladder/diaphragm EPDM or FKM **PVDF Housing material**

Further material versions and details available on request.

P_AC_0260_SW1


Bladder damper, high pressure

Volume 0.13 - 0.39 | Pressure 793 bar Material of bladder/diaphragm EPDM or FKM

Housing material 316 L stainless steel, Hastelloy C, Alloy 20

Further material versions and details available on request.

Diaphragm damper with PTFE diaphragm

Volume 0.20 137 bar Material of bladder/diaphragm PTFE

Housing material 316 L stainless steel, Hastelloy C, Alloy 20

Further material versions and details available on request.

P_AC_0261_SW1

ProMinent

Data Required for Specification of Metering Pump and Accessories

Pump Specification Data

Min./max. required feed rate	l/h
Available power supply	V, Hz
Min./max. operating temperature	°C
Properties of process chemical	
Name, concentration %	
Solids content %	
Dynamic viscosity mPa (= cP)	-
Vapour pressure at operating temperature	bar
Remarks, e.g. abrasive,	
gaseous, flammable,	
corrosive towards	
Suction conditions:	
Min./max. suction lift	m
Min./max. positive suction head	m
Pressure in chemical tank	bar
Suction line length	m
Suction line diameter	mm
Discharge conditions:	
Min./max. back pressure	bar
Min./max. discharge head	m
Min./max. negative discharge head	m
Discharge line length	m
Discharge line diameter	mm
Number of valves and fittings in	
suction and discharge line	
Data required for proportional dosing:	
Water flow Q min./max.	m ³ /h
Required final concentration	g/m ³ , ppm

Example:

A required dose in $mg/I = g/m^3 = ppm$

(Water flow Q max. 50 m³/h)

Pulse spacing (flow volume per pulse) of water meter $5\ \mathrm{l}.$

Process fluid = sodium hypochlorite solution Na OCI with 12 % chlorine (by weight) = 120 g/kg = 150 g/l = 150 mg/ml

Selected dosing pump GALa 1005 NPB2 with 0.41 ml/per stroke volume, at max. 10800 strokes/h.

Variables: pump type, pulse spacing and concentration. The stroke rate (max. throughput I/h: pulse spacing I/pulse = 50,000 I/h: 5 I/pulse = 10000 pulses/h) must not exceed the max. stroke frequency (10800 strokes/h) of the dosing pump.

Feed quantity =
$$\frac{\text{water throughput Q max. (I/h) x stroke volume (I)}}{\text{pulse spacing (I)}} = \frac{50,000 \text{ I x } 0.00041 \text{ I}}{\text{h x 5 I}} = 4.1 \text{ I/h}$$

Final dose
$$= \frac{\text{concentration (mg/ml) x stroke volume (l)}}{\text{pulse spacing (l)}} = \frac{150 \text{ mg x 0.41 ml}}{\text{ml x 5 l}} = 12.3 \text{ mg/l}$$
$$= 12.3 \text{ g/m}^3$$
$$= 12.3 \text{ ppm chlorine Cl}_2$$

pk_0_002

Resistance of Materials Used in Liquid Ends to the Chemicals Most Frequently Used

The data apply to standard conditions (20 °C, 1,013 mbar).

s	=	saturated	solution	in water
---	---	-----------	----------	----------

+ = resistant

+/o = largely resistant

c = conditionally resistant

- = not resistant

n = resistance not known

=> = see

= for bonded connections, the resistance of the adhesive (e.g. Tangit) is to be considered. (Materials of the types 'o' and '-' are not recommended!)

** = does not apply to glass fibre reinforced material

Concentration data are stated in weight percent, relative to aqueous solutions. If percentages are stated for the level of resistance, this level of resistance is only valid up to this concentration.

NOTE:

The elastomers **CSM (Hypalon®)** and **IIR (butyl rubber)** used as diaphragm materials in pulsation dampers have properties similar to **EPDM**.

PTFE is resistant to all chemicals in this list.

PTFE filled with carbon,however, is attacked by strong oxidants such as bromine (anhydrous) or concentrated acids (phosphoric acid, sulphuric acid, chromic acid).

The resistance of PVC-U adhesive joints with Tangit deviates from the list below with regard to the following chemicals:

Medium	Concentration range
Sulfochromic acid	\geq 70% H ₂ SO ₄ + 5% K ₂ Cr ₂ O ₇ /Na ₂ Cr ₂ O ₇
Chromic acid	≥ 10% CrO ₃
Hydrochloric acid	≥ 25% HCl
Hydrogen peroxide	≥ 5% H ₂ O ₂
Hydrofluoric acid	≥ 0% HF

Explanation of abbreviations used as column headings:

PMMA:	Polymethylmethacrylate (Acrylic resistance)
PVC:	Polyvinylchloride, rigid, (PVC-U) resistance
PP:	Polypropylene resistance
PVDF:	Polyvinylidene fluoride
1.4404:	Stainless steel 1.4404 & 1.4571 resistance
FKM:	Fluorine Rubber (e.g. Viton® A & B) resistance
EPDM:	Ethylene-Propylene-Dien-rubber resistance
PharMed®:	PharMed® resistance
PE:	Polyethylene resistance
2.4819:	Hastelloy C-276 resistance
WGK:	Water endangering class

Viton® is a registered trademark of DuPont Dow Elastomers

Water endangering classes (WGK):

1 = slightly hazardous to water

2 = hazardous to water

3 = severely hazardous to water

(X) = no classification. Classification according to conclusion by analogy.
 To be used under reserve.

Safety data sheets

Safety data sheets on our products in a number of different languages are provided on our website.

www.prominent.com/MSDS

1.1.2017

The data is taken from relevant manufacturer's documentation and our own tests. Resistance of materials is also dependant on other factors, e.g. operating conditions, conditions of surfaces etc, and so this list must be treated as an initial guide only. It cannot claim to offer any guarantees. It should be taken into consideration in particular that usual dosing media are compounds, and their corrosiveness cannot be deducted simply by adding the corrosiveness of each single component. In such cases the chemical producers' data of the material compatibility are to be considered as a matter of prime importance for the material choice. A safety data sheet does not give this data and therefore cannot take the place of the technical documentation on the application.

Chemical	Formula	Conc	PMMA	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed®	PE	2.4819	WPC
Acetaldehyde	CH ₃ CHO	100%	-	-	0	-	+	-	+/0	-	+	+	2
Acetamide	CH ₃ CONH ₂	s	+	+	+	+	+	0	+	+/o	+	+	1
Acetic Acid	CH ₃ COOH	100%	-	50%	+	+	+	-	0	60%	70%	+	1
Acetic Anhydride	(CH ₃ CO) ₂ O	100%	-	-	0	-	+	-	+/0	+	0	+	1
Acetic Ether => Ethyl Acetate													
Acetone	CH ₃ COCH ₃	100%	-	-	+	-	+	-	+	-	+	+	1
Acetophenone	C ₆ H ₅ COCH ₃	100%	-	n	+	-	+	-	+	n	+	+	
Acetyl Chloride	CH₃COCI	100%	-	+	n	-	0	+	-	0	n	+	1
Acetylacetone	CH ₃ COCH ₂ COCH ₃	100%	-	-	+	-	+	-	+	n	+	+	1
Acetylene Dichloride => Dichloro	Ethylene												
Acetylene Tetrachloride => Tetra	achloro Ethane												
Acrylonitril	CH ₂ =CH-CN	100%	-	-	+	+	+	-	-	-	+	+	3
Adipic Acid	HOOC(CH ₂) ₄ COOH	s	+	+	+	+	+	+	+	+/0	+	+	1
Allyl Alcohol	CH ₂ CHCH ₂ OH	96%	-	0	+	+	+	-	+	0	+	+/o	2
Aluminium Acetate	AI(CH ₃ COO) ₃	S	+	+	+	+	+	+	+	+	+	+/0	1
Aluminium Bromide	AlBr ₃	s	+	+	+	+	n	+	+	+	+	+	2
Aluminium Chloride	AICI ₃	s	+	+	+	+	-	+	+	+	+	+	1
Aluminium Fluoride	AIF ₃	10%	+	+	+	+	-	+	+	+	+	+/0	1
Aluminium Hydroxide	Al(OH) ₃	S	+	+	+	+	+	+	+	+	+	+	1
Aluminium Nitrate	AI(NO ₃) ₃	s	+	+	+	+	+	+	+	+	+	+	1
Aluminium Phosphate	AIPO ₄	s	+	+	+	+	+	+	+	+	+	+	1
Aluminium Sulphate	Al ₂ (SO ₄) ₃	s	+	+	+	+	+	+	+	+	+	+	1
Ammonium Acetate	CH ₃ COONH ₄	s	+	+/0	+	+	+	+	+	+	+	+	1
Ammonium Bicarbonate	NH ₄ HCO ₃	s	+	+	+	+	+	+	+	+	+	+	1
Ammonium Carbonate	(NH ₄) ₂ CO ₃	40%	+	+	+	+	+	+	+	+	+	+	1
Ammonium Chloride	NH ₄ CI	s	+	+	+	+	-	+	+	+	+	+/o	1
Ammonium Fluoride	NH ₄ F	s	+	0	+	+	0	+	+	+	+	+	1
Ammonium Hydroxide	"NH₄OH"	30%	+	+	+	+ (25°C)	+		+	+	+	+	2
Ammonium Nitrate	NH ₄ NO ₃	s	+	+	+	+	+	+	+	+	+	+	1
Ammonium Oxalate	(COONH ₄) ₂ * H ₂ O	s	+	+	+	+	+	+	+	+	+	+	1
Ammonium Perchlorate	NH ₄ ClO ₄	10%	+	+	+	+	+	+	+	+	+	+	1
Ammonium Peroxodisulphate	(NH ₄) ₂ S ₂ O ₈	s	+	+	+	+	5%	+	+	+	+	5%	2
Ammonium Phosphate	$(NH_4)_3PO_4$	s	+	+	+	+	10%	+	+	+	+	10%	1
Ammonium Sulphate	(NH ₄) ₂ SO ₄	s	+	+	+	+	10%	+	+	+	+	10%	1
Ammonium Sulphide	(NH ₄) ₂ S	s	+	+	+	+	n	+	+	n	+	n	2
Ammoniumaluminium Sulphate	$NH_4Al(SO_4)_2$	s	+	+	+	+	+	+	+	+	+	+	1
Amyl Alcohol	C5H ₁₁ OH	100%	+	+	+	+	+	_	+	-	+	+	1
Aniline	C ₆ H ₅ NH ₂	100%	-	-	+	+	+		+/0	0	+	+	2
Aniline Hydrochloride	C ₆ H ₅ NH ₂ * HCl	S	n	+	+	+	-	+/0	+/0	0	+	+	2
Antimony Trichloride	SbCl ₃	s	+	+	+	+	-	+	+	+	+	n	2
Aqua Regia	3 HCI + HNO ₃	100%	-	+	_	+	-	_	0	-		-	2
Arsenic Acid	H ₃ AsO ₄	S	+	+	+	+	+	+	+	0	+	+	3
Barium Carbonate	BaCO ₃	S	+	+	+	+	+	+	+	+	+	+	1
Barium Chloride	BaCl ₂	s	+	+	+	+		+	+	+	+	+	1
Barium Hydroxide	Ba(OH) ₂	s	+	+	+	+	+	+	+	+	+	+	1
Barium Nitrate	Ba(NO ₃) ₂	s	+	+	+	+	+	+	+	+	+	+	1
Barium Sulphate	BaSO ₄												1
Barium Sulphide	BaSO ₄	s s	+	+	+	+	+	+	+	+	+	+	(1)
·													
Benzaldehyde Benzene	C ₆ H ₅ CHO	100%	-	-	+	-	+	+	+	-	0	+	1
Benzene Sulphonic Acid	C ₆ H ₆ C ₆ H ₅ SO ₃ H	100%	- n	- n	0	+	+	0	-		0 n	+	3
			n	n	+	+	+	+	-	-	n	+	2
Benzoic Acid	C ₆ H ₅ COOH	S 1000/	+	+	+	+	+	+	+	+/0	+	+	1
Benzoyl Chloride	C ₆ H ₅ COCI		-	n	0	n	0	+	+	n	0	+	2
Benzyl Alcohol	C ₆ H ₅ CH ₂ OH	100%	-	-	+	+	+	+	-	+	+	+	1
Benzyl Benzoate	C ₆ H ₅ COOC ₇ H ₇		-	-	+	0	+	+	-	-	+	+	2
Benzyl Chloride	C ₆ H ₅ CH ₂ CI	90%	-	n	0	+	+	+	-	-	0	+	2
Bitter Salt => Magnesium Sulpha	ate												
Bleach => Sodium Hypochlorite													

Blue Vitriol => Copper Sulphate

Borax => Sodium Tetraborate

1.1.2017

Brimme (40) Brg. 100%	Chemical	Formula	Conc	PMMA	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed®	PE	2.4819	WPC
Bremine Water Break Brea	Boric Acid	H ₃ BO ₃	s	+	+	+	+	+	+	+	+	+	+	1
Brown Bear Berner Bis + H ₂ O s s	Brine		S	+	+/0	+	+	+/0	+	+	+	+	+	
Brance Brance Capt. Est 100%	Bromine (dry)	Br ₂	100%	-	-	-	+	-	-	-	-	-	+	2
Browneshort Membrane CH-SBC 100%	Bromine Water	$Br_2 + H_2O$	S	-	+	-	+	-	-	-	n	-	n	(2)
Brownesh Define HOCIBIC 100%	Bromo Benzene	C ₆ H ₅ Br	100%	n	n	0	+	+	0	-	-	0	+	2
Bilamentical HOC_H_OH 10% n	Bromochloro Methane	CH ₂ BrCl	100%	-	-	-	+	+	n	+/0	-	0	+	2
Bulamerino C,HH ₂ O ₂ S	Bromochlorotrifluoro Ethane	HCCIBrCF ₃	100%	-	-	0	+	+	+	-	+	0	+	(3)
Buty Acotate C,H_0OH 100%	Butanediol	HOC ₄ H ₈ OH	10%	n	+	+	+	+	0	+	+	+	+	1
Binyl Acetate	Butanetriol	C ₄ H ₁₀ O ₃	s	+	+	+	+	+	0	+	+	+	+	1
Bunyl Ackonte Summar	Butanol	C ₄ H ₉ OH	100%	-	+	+	+	+	0	+/o	-	+	+	1
Blany A Amine	Butyl Acetate	C ₇ H ₁₃ O ₂	100%	-	-	+	+	+	-	-	+/0	+	+	1
Barly Almine	Butyl Acetate	CH ₃ COOC ₄ H ₉	100%	-	-	0	+	+	-	+/0	+/0	-	+	1
Buyly Benzales	Butyl Alcohol => Butanol													
Burly Mercaptane	Butyl Amine	C ₄ H ₉ NH ₂	100%	n	n	n	-	+	-	-	n	+	+	1
Buty Mercaptane	Butyl Benzoate	C ₆ H ₅ COOC ₄ H ₉	100%	-	-	0	n	+	+	+	-	0	+	2
Blay Oleate	•	0 0 1 0	100%	n	n	n	+	n	+		n	n	n	3
Bushy Starlaret	· ·									+/0				1
Bluyria chief	•			0	n									1
Butyric Acid	•									+/0				
Cacloum Acetate (CH4;COO)QCa s + + + + + + + + + + + + + + + 1 (1) Calcium Bulphine Ca(FSO)Q2 s + + + + + + + + + + + + + + + + + 1 (1) Calcium Carbonate CaCOq s + + + + + + + + + + + + + + + + + +	•	0 /												
Calcium Bisulphite	•	· ·												
Calcium Carbonate														
Calcium Chloride Calcium Sulphide CaSQ s	·													` '
Calcium Hydroxide		•												
Calcium Hydroxide														
Calcium Hypochlorite Ca(OCI) ₂ S + + - 0 + + + + 2 Calcium Nitrate Ca(NO ₃) ₂ S +	•	, , <u>L</u>												
Calcium Nitrate	· · · · · · · · · · · · · · · · · · ·	` '-												
Calcium Phosphate Ca ₃ (PO ₄) ₂ 8 + <t< td=""><td>• •</td><td>· · · · · · =</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	• •	· · · · · · =												
Calcium Sulphate														
Calcium Sulphide CaSS	•													
Calcium Sulphite	•													
Calcium Thiosulphate CaS _Q O ₃ s +	•													
Carbon C								+						
Carbon Disulphide CS2 100% - - 0 + + + - 0 + 2 Carbon Tetrachloride CCI4 100% - - + - - 0 - 10% + 2 + + + - - + + 10% + + + -	•	CaS ₂ O ₃	S	+	+	+	+	-	+	+	+	+	+	1
Carbon Tetrachloride CCI ₄ 100% - - + - - 0 +		00	1000/											•
Carbonic Acid "H ₂ CO ₃ " s + - 0 0 + 10% + 2 Chlorine Choide HCIO3 20% + 0 + 0 - 0 0 - 0 - 0 - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0<	•	_												
Caustic Potassium Hydroxide Caustic Soda => Sodium Hydroxide Clorica Calcium Spoolium Hydroxide Chlorica Calcium Hybrochide Chlorica Calcium Hybrochide Chlorica Calcium Hybrochide Chlorica Edicium Hybrochide Chlo														
Caustic Soda \Rightarrow Sodium Hydroxide Chloric Acid		2 0	S	+	+	+	+	+	+	+	+	+	+	1
Chloric Acid HClO3		•												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	•													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			20%	+	+	-	+	-	0	0	+	10%	+	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,,												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chlorine Dioxide Solution		0.5%	0	+	0	+ 1)	-	0	-	-	0	+	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chlorine Water			+	+	0	+	-	+	+	-	0	+	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chloro Benzene		100%	-	-	+	+	+	+	-	-	0	+	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chloro Ethanol	CICH ₂ CH ₂ OH	100%	-	-	+	0	+	-	0	+	+	+	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chloro Ethylbenzene		100%	-	-	0	n	+	0	-	-	0	+	(2)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chloro Phenole	C ₆ H ₄ OHCI	100%	-	n	+	+	+	n	-	-	+	+	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chloro Toluene	C ₇ H ₈ CI	100%	-	-	n	+	+	+	-	-	n	+	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chloroacetone	CICH ₂ COCH ₃	100%	-	-	n	n	+	-	+	-	n	+	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chlorobutadiene	C ₄ H ₅ Cl	100%	-	-	n	n	+	+	-	-	n	+	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chloroform	CHCl ₃	100%	-	-	0	+	+	+	-	0	-	+	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chlorohydrin	C ₃ H ₅ OCI	100%	-	n	+	-	+	+	0	+	+	+	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chloroprene => Chlorobutadier	ne												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chlorosulphonic Acid	SO ₂ (OH)CI	100%	-	0	-	+	-	-	-	-	-	0	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Chrome-alum => Potassium Ch													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Chromic Acid	H₂CrO₄	50%	-	+*	0	+	10%	+	-	0	+	10%	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				-						n				
Citric Acid $C_6H_8O_7$ s + + + + + + + + + + + + + + + + + +	•			+		+								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	·													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	• • •													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
Copper-II-Sulphate CuSO ₄ s + + + + + + + + + 2														
··· · · · · · · · · · · · · · · · · ·														
Cresois C ₆ H ₄ CH ₃ OH 100% o o + + + + + + 2		<u> </u>												
	Cresols	C ₆ H ₄ CH ₃ OH	100%	0	0	+	+	+	+	-	-	+	+	2

1.1.2017 3

Chemical	Formula	Conc	PMMA	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed®	PE	2.4819	WPC
Crotonaldehyde	CH ₃ C ₂ H ₂ CHO	100%	n	-	+	+	+	-	+	-	+	+	3
Cubic Nitre => Sodium Nitrate													
Cumene => Isopropyl Benzene													
Cyclo Hexane	C ₆ H ₁₂	100%	+	-	+	+	+	+	-	-	+	0	1
Cyclohexanole	C ₆ H ₁₁ OH	100%	0	+/0	+	+	+	+	-	-	+	+	1
Cyclohexanone	C ₆ H ₁₀ O	100%	-	-	+	-	+	-	+/0	-	+	+	1
Cyclohexyl Alcohol => Cyclohexa													
Cyclohexylamine	C ₆ H ₁₁ NH ₂	100%	n	n	n	n	+	-	n	n	n	+	2
Decahydronaphthaline	C ₁₀ H ₁₈	100%	-	+/0	0	+	n	0	-		0	+	2
Decaline => Decahydronaphthale	ene												
Dextrose => Glucose	011 0	1000/				_							
Diacetonalcohol Dibromoethane	C ₆ H ₁₂ O ₂	100%	-	-	+	0	+	-	+		+	+	3
Dibutyl Ether	C ₂ H ₄ Br ₂	100%	-	-	n	+	+	+	0	-		+	2
Dibutyl Phthalate	C ₄ H ₉ OC ₄ H ₉ C ₁₆ H ₂₂ O ₄	100%	-	-	+	+	+	+	+/0	+	+	+	2
Dibutylamine	(C ₄ H ₉) ₂ NH	100%	n	n	+	+	+	_	-70	n	+	+	1
Dichloro Acetic Acid	Cl ₂ CHCOOH	100%	-	+	+	+	+	-	+	0	+	+	1
Dichloro Benzene	C ₆ H ₄ Cl ₂	100%	-	_	0	+	+	+	-	-	0	+	2
Dichloro Butan	C ₄ H ₈ Cl ₂	100%	-		0	+	+	+	-	-	0	+	3
Dichloro Butene	C ₄ H ₆ Cl ₂	100%	-	-	0	+	+	0	-		0	+	3
Dichloro Ethane	C ₂ H ₄ Cl ₂	100%	-	-	0	+	+	+	-	0	-	+	3
Dichloro Ethylene	C ₂ H ₂ Cl ₂	100%	-	-	0	+	+	0	-	0	-	+	2
Dichloro Methane	CH ₂ Cl ₂	100%	-	-	0	0	0	+	-	0	-	+	2
Dichloroisopropyl Ether	(C ₃ H ₆ CI) ₂ O	100%	-	-	0	n	+	0	0	-	0	+	(2)
Dicyclohexylamine	(C ₆ H ₁₂) ₂ NH	100%	-	-	0	n	+	-	-	-	0	+	2
Diethyleneglycol	C ₄ H ₁₀ O ₃	S	+	+	+	+	+	+	+	+	+	+	1
Diethyleneglycolethyl Ether	C ₈ H ₁₈ O ₃	100%	n	n	+	+	+	n	+/0	0	+	+	1
Diethylether	C ₂ H ₅ OC ₂ H ₅	100%	-	-	0	+	+	-	-	0	0	+	1
Diglycolic Acid	C ₄ H ₆ O ₅	30%	+	+	+	+	+	+	n	+/0	+	+	3
Dihexyl Phthalate	C ₂₀ H ₂₆ O ₄	100%	-	-	+	+	+	-	n	+	+	+	(1)
Diisobutylketone	C ₉ H ₁₈ O	100%	-	-	+	+	+	-	+	-	+	+	1
Di-iso-nonyl Phthalate	C ₂₆ H ₄₂ O ₄	100%	-	-	+	+	+	n	n	+	+	+	1
Diisopropylketone	C ₇ H ₁₄ O	100%	-	-	+	+	+	-	+		+	+	1
Dimethyl Carbonate	(CH ₃ O) ₂ CO	100%	n	n	+	+	+	+	-	n	+	+	1
Dimethyl Ketone => Acetone	C 11 O	1000/		-					. /-				4
Dimethyl Phthalate Dimethylformamide	C ₁₀ H ₁₀ O ₄	100%	-	-	+	+	+	-	+/0	+/0	+	+	1
Dimethylhydrazine	HCON(CH ₃) ₂ H ₂ NN(CH ₃) ₂	100%	n	n	+	n	+	-	+	+/0 n	+	+	3
Dioctyl Phthalate	$C_4H_4(COOC_8H_{17})_2$	100%	-	-	+	+	+	-	+/0	+	+	+	1
Dioxane	C ₄ H ₈ O ₂	100%	-	-	0	-	+	-	+/0	-	+	+	1
Disodium Hydrogenphosphate	Na ₂ HPO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Disulfur Acid Oleum			•		•	•	•	·		·		•	
Disulphur Dichloride	S ₂ Cl ₂	100%	n	n	n	+	n	+	-		n	n	
DMF => Dimethylformamide	-22												
Engine Oils		100%	n	+/0	+	+	+	+	-	-	+	+	2
Epsom salts => Magnesium Sulp	hate												
Ethanol	C ₂ H ₅ OH	100%	-	+	+	+	+	-	+	+	+	+	1
Ethanol Amine	HOC ₂ H ₄ NH ₂	100%	0	n	+	-	+	-	+/0	0	+	+	1
Ethyl Acetate	CH ₃ COOC ₂ H ₅	100%	-	-	35%	+	+	-	+/0	+/0	+	+	1
Ethyl Acrylate	C ₂ H ₃ COOC ₂ H ₅	100%	-	-	+	0	+	-	+/0	-	+	+	2
Ethyl Benzene	$C_6H_5-C_2H_5$	100%	-	-	0	+	+	0	-	-	0	+	1
Ethyl Benzoate	C ₆ H ₅ COOC ₂ H ₅	100%	n	-	+	0	+	+	-	-	+	+	1
Ethyl Bromide	C ₂ H ₅ Br	100%	-	n	+	+	n	+	-	0	+	+	2
Ethyl Chloroacetate	CICH ₂ COOC ₂ H ₅	100%	-	0	+	+	+	+	-	•	+	+	2
Ethyl Chlorocarbonate	CICO ₂ C ₂ H ₅	100%	n	n	n	n	n	+	-	n	n	n	(2)
Ethyl Cyclopentane	C5H ₄ C ₂ H ₅	100%	+	+	+	+	+	+	-	-	+	+	(1)
Ethylacetoacetate	C ₆ H ₁₀ O ₃	100%	n	-	+	+	+	-	+/0	+/0	+	+	1
Ethylana Diamina	C ₄ H ₇ COOH	100%	n	n	+	+	+	n	+/0	n	+	+	(1)
Ethylene Diamine	(CH ₂ NH ₂) ₂	100%	0	0	+	-	0	-	+	n	+	0	2
Ethylene Dibromide => Dibromoe													
Ethylene Dichloride => Dichloro E	:инапе												
Ethylene Glycol => Glycol	HOC H CC H	1000/	n	n				_	1/0				1
Ethylenglycol Ethylether	HOC ₂ H ₄ OC ₂ H ₅	100%	n	n L/o	+	+	+	n	+/0	0	+	+	1
Ethylhexanol	C ₈ H ₁₆ O	100%	n	+/0	+	+	+	+	+		+	+	
Fatty Acids Ferric Chloride	R-COOH FeCl ₃	100%	+	+	+	+	+	+	0	0	+	+ +/0	1
Ferric Unioride Ferric Nitrate	Fe(NO ₃) ₃	S	+	+	+	+		+	+	+	+		1
Ferric Nitrate Ferric Phosphate	FePO ₄	s	+	+	+	+	+	+	+	+	+	+	1
Ferric Sulphate	Fe ₂ (SO ₄) ₃	s	+	+	+	+	0	+	+	+	+	+	1
i cino Guipriate	1 02(004/3	3	т	т	т	т	U	т	т	r	т	т	

4 1.1.2017

Chemical	Formula	Conc	РММА	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed®	PE	2.4819	WPC
Ferrous Chloride	FeCl ₂	s	+	+	+	+	-	+	+	+	+	+/0	1
Ferrous Sulphate	FeSO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Fixing Salt => Sodium Thiosulpha			•	•		·	•		•	•	•	•	•
Fluoro Benzene		100%	_					_	_	-			2
	C ₆ H ₅ F				+	+	+	0			0	+	
Fluoroboric Acid	HBF ₄	35%	+	+	+	+	0	+	+	-	+	+	1
Fluorosilicic Acid	H ₂ SiF ₆	100%	+	30%	30%	+	0	+	+	0	40%	+/0	2
Formaldehyde	CH ₂ O	40%	+	+	+	+	+	-	+/0	-	+	+	2
Formalin => Formaldehyde													
Formamide	HCONH ₂	100%	+	-	+	+	+	+	+	n	+	+	1
Formic Acid	НСООН	s	-	+/0	+	+	+	-	-	+/o	+	+	1
Furane	C ₄ H ₄ O	100%	-	-	+	-	+	_	n	-	+	+	3
Furane Aldehyde	C ₅ H ₅ O ₂	100%	n	n	n	0	+		+/0	-	n	n	2
Furfuryl Alcohol	OC ₄ H ₃ CH ₂ OH	100%	-	-	+	0	+	n	+/0	-	+	+	1
•													
Gallic Acid	C ₆ H ₂ (OH) ₃ COOH	5%	+	+	+	+	+	+	+/0	+	+	+	1
Gasoline		100%	-	-	+	+	+	+	-	-	+	+	2
Glauber's Salt => Sodium Sulpha	ate												
Glucose	C ₆ H ₁₂ O ₆	s	+	+	+	+	+	+	+	+	+	+	1
Glycerol	$C_3H_5(OH)_3$	100%	+	+	+	+	+	+	+	+	+	+	1
Glycerol Triacetate	$C_3H_5(CH_3COO)_3$	100%	n	n	+	+	+	-	+	n	+	+	1
Glycine	NH ₂ CH ₂ COOH	10%	+	+	+	+	+	+	+	+	+	+	1
Glycol	C ₂ H ₄ (OH) ₂	100%	+	+	+	+	+	+	+	+	+	+	1
Glycolic Acid	CH ₂ OHCOOH	70%		37%						+/0			1
•	01 1201 1000H	7070	+	J17/0	+	+	+	+	+	1 /U	+	+	'
Gypsum => Calcium Sulphate	0.11	465											
Heptane	C ₇ H ₁₆	100%	+	+	+	+	+	+	-	-	+	+	1
Hexachloroplatinic Acid	H ₂ PtCl ₆	S	n	+	+	+	-	n	+	n	+	-	
Hexanal	C ₅ H ₁₁ CHO	100%	n	n	+	+	+	-	+/0	-	+	+	1
Hexane	C ₆ H ₁₄	100%	+	+	+	+	+	+	-	-	+	+	1
Hexanol	C ₆ H ₁₃ OH	100%	-	-	+	+	+	n	+	0	+	+	1
Hexantriol	C ₆ H ₉ (OH) ₃	100%	n	n	+	+	+	+	+	n	+	+	1
Hexene	C ₆ H ₁₂	100%	n	+	+	+	+	+	-		+	+	1
Hydrazine Hydrate	N ₂ H ₄ * H ₂ O	S	+	+	+	+	+	n	+	0	+	+	3
	HBr	50%					-	-		-		0	1
Hydrobromic Acid			+	+	+	+			+		+		
Hydrochloric Acid	HCI	38%	32%	+ *	+	+	-	+	0	0	+	0	1
Hydrofluoric Acid	HF	80%	-	40%*	40%**	+	-	+	0	-	40%	+/0	1
Hydrogen Cyanide	HCN	S	+	+	+	+	+	+	+	+	+	+	3
Hydrogen Peroxide	H_2O_2	90%	40%	40%*	30%	+	+	30%	30%	+	+	+	1
Hydroiodic Acid	HI	s	+	+	+	+	-	-	n	-	+	n	1
Hydroquinone	C ₆ H ₄ (OH) ₂	s	0	+	+	+	+	+	-	+/o	+	+	2
Hydroxylamine Sulphate	(NH ₂ OH) ₂ * H ₂ SO ₄	10%	+	+	+	+	+	+	+	+	+	+	2
Hypochlorous Acid	HOCI	S	+	+	0	+	-	+	+/0	+	0	+	(1)
lodine				•		+	-	+	+/0	+		+/0	(1)
	l ₂	S	0	-	+	+	-	+	+/0	+	0	+/0	
Iron Vitriol => Ferrous Sulphate													
Isobutanol => Isobutyl Alcohol													
Isobutyl Alcohol	C ₂ H ₅ CH(OH)CH ₃	100%	-	+	+	+	+	+	+	0	+	+	1
Isopropanol => Isopropyl Alcohol													
Isopropyl Acetate	CH ₃ COOCH(CH ₃) ₂	100%	-	-	+	+	+	-	+/o	+/0	+	+	1
Isopropyl Alcohol	(CH ₃) ₂ CHOH	100%	-	+/0	+	+	+	+	+	0	+	+	1
Isopropyl Benzene	C ₆ H ₅ CH(CH ₃) ₂	100%	-	-	0	+	+	+	-	-	0	+	1
Isopropyl Chloride	CH ₃ CHClCH ₃	80%	_	-	0	+	+	+	-	0	0	+/0	2
Isopropyl Ether													1
	C ₆ H ₁₄ O	100%	-	-	0	+	+	-	-	0	0	+	'
Kitchen Salt => Sodium Chloride	0.11.0						,			,			
Lactic Acid	C ₃ H ₆ O ₃	100%	-	+	+	+	+/0	+	10%	+/0	+	+	1
Lead Acetate	Pb(CH ₃ COO) ₂	S	+	+	+	+	+	+	+	+	+	+	2
Lead Nitrate	Pb(NO ₃) ₂	50%	+	+	+	+	+	+	+	+	+	+	2
Lead Sugar => Lead Acetate													
Lead Sulphate	PbSO ₄	s	+	+	+	+	+	+	+	+	+	+	(2)
Lead Tetraethyl	Pb(C ₂ H ₅) ₄	100%	+	+	+	+	+	+	-	n	+	+	3
Lime Milk => Calcium Hydroxide	1 2 3/4	, , , ,											
Liquid Ammonia => Ammonium F	Hydrovida												
	Tyuroxiue	_											_
	L:D.:	S	+	+	+	+	+	+	+	+	+	+	1
Lithium Bromide	LiBr												1
Lithium Chloride	LiBr LiCl	s	+	+	+	+	-	+	+	+	+	n	
Lithium Chloride Lunar Caustic => Silver Nitrate	LiCl		+	+	+	+	-	+	+	+	+		
Lithium Chloride			+	+	+	+	+	+	+	+	+	n +/o	1
Lithium Chloride Lunar Caustic => Silver Nitrate	LiCl	S											
Lithium Chloride Lunar Caustic => Silver Nitrate Magnesium Carbonate	LiCl MgCO ₃	s	+	+	+	+	+	+	+	+	+	+/0	1
Lithium Chloride Lunar Caustic => Silver Nitrate Magnesium Carbonate Magnesium Chloride Magnesium Hydroxide	LiCl MgCO ₃ MgCl ₂ Mg(OH) ₂	s s s	+ + + +	+ + + +	+ + + +	+ + + +	+ 0 +	+ + + +	+ + + +	+ + + +	+ + + +	+/0 + +	1 1 1
Lithium Chloride Lunar Caustic => Silver Nitrate Magnesium Carbonate Magnesium Chloride Magnesium Hydroxide Magnesium Nitrate	MgCO ₃ MgCl ₂ Mg(OH) ₂ Mg(NO ₃) ₂	s s s s	+ + + + + +	+ + + + +	+ + + + +	+ + + + + +	+ 0 + +	+ + + + +	+ + + + + +	+ + +	+ + + + +	+/0 + + +	1 1 1
Lithium Chloride Lunar Caustic => Silver Nitrate Magnesium Carbonate Magnesium Chloride Magnesium Hydroxide Magnesium Nitrate Magnesium Sulphate	MgCO ₃ MgCl ₂ Mg(OH) ₂ Mg(NO ₃) ₂ MgSO ₄	s s s s s	+ + + + + +	+ + + + + + +	+ + + + + + +	+ + + + + + +	+ 0 + +	+ + + + + + +	+ + + + + + +	+ + + +	+ + + + + + +	+/0 + + + +	1 1 1 1
Lithium Chloride Lunar Caustic => Silver Nitrate Magnesium Carbonate Magnesium Chloride Magnesium Hydroxide Magnesium Nitrate	MgCO ₃ MgCl ₂ Mg(OH) ₂ Mg(NO ₃) ₂	s s s s	+ + + + + +	+ + + + +	+ + + + +	+ + + + + +	+ 0 + +	+ + + + +	+ + + + + +	+ + +	+ + + + +	+/0 + + +	1 1 1

1.1.2017 5

Chemical	Formula	Conc	РММА	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed®	PE	2.4819	WPC
Manganese-II-Chloride	MnCl ₂	s	+	+	+	+	-	+	+	+	+	+	1
Manganese-II-Sulphate	MnSO ₄	S	+	+	+	+	+	+	+	+	+	+	1
MEK => Methyl Ethyl Ketone													
Mercury	Hg	100%	+	+	+	+	+	+	+	+	+	+	3
Mercury-II-Chloride	HgCl ₂	s	+	+	+	+	-	+	+	+	+	+	3
Mercury-II-Cyanide	Hg(CN) ₂	S	+	+	+	+	+	+	+	+	+	+	3
Mercury-II-Nitrate	Hg(NO ₃) ₂	S	+	+	+	+	+	+	+	+	+	+	3
Mesityl Oxide	C ₆ H ₁₀ O	100%	-	-	n	n	+	-	+/0	-	n	+	1
Methacrylic Acid	C ₃ H ₅ COOH	100%	n -	n -	+	+	+	0	+/0	+/0	+	+	1
Methanol Methoxybutanol	CH ₃ OH CH ₃ O(CH ₂) ₄ OH	100%	-	-	+	+	+	0	+	+/0	+	+	-
Methyl Acetate	CH ₃ COOCH ₃	60%	-	-	+	+	+	+	o +/o	+/0	+	+	(1)
Methyl Acrylate	C ₂ H ₃ COOCH ₃	100%	-	-	+	+	+	-	+/0	0	+	+	2
Methyl Benzoate	C ₆ H ₅ COOCH ₃	100%	-	-	+	0	+	+	-	-	+	+	2
Methyl Catechol	C ₆ H ₃ (OH) ₂ CH ₃	S	+	+	+	+	+	+	-	+0	+	+	(1)
Methyl Cellulose	-6. 3(-1.72-1.3	S	+	+	+	+	+	+	+	+	+	+	1
Methyl Chloroacetate	CICH ₂ COOCH ₃	100%	-	0	+	+	+	0	-	-	+	+	2
Methyl Cyclopentane	C ₅ H ₉ CH ₃	100%	+	+	+	+	+	+	-	-	+	+	(1)
Methyl Dichloroacetate	Cl ₂ CHCOOCH ₃	100%	-	-	+	n	+	-	n	-	+	+	2
Methyl Ethyl Ketone	CH ₃ COC ₂ H ₅	100%	-	-	+	-	+	-	+	-	+	+	1
Methyl Glycol	C ₃ H ₈ O ₂	100%	+	+	+	+	+	-	+/0	+	+	+	1
Methyl Isobutyl Ketone	CH ₃ COC ₄ H ₉	100%	-	-	+	-	+	-	0	-	+	+	1
Methyl Isopropyl Ketone	CH ₃ COC ₃ H ₇	100%	-	-	+	-	+	-	+/0	-	+	+	1
Methyl Methacrylate	C ₃ H ₅ COOCH ₃	100%	-	-	+	+	+	-	-	-	+	+	1
Methyl Oleate	C ₁₇ H ₃₃ COOCH ₃	100%	n	n	+	+	+	+	+/0	n	+	+	1
Methyl Salicylate	HOC ₆ H ₄ COOCH ₃	100%	-	-	+	+	+	n	+/0	-	+	+	1
Methylacetyl Acetate	C ₅ H ₈ O ₃	100%	-	-	+	+	+	-	+/0	0	+	+	2
Methylamine	CH ₃ NH ₂	32%	+	0	+	0	+	-	+	+	+	+	2
Methylene Chloride => Dichloro	Methane												
Mirabilit => Sodium Sulphate Morpholine	C H ON	100%	_	_		_		_	<u> </u>				2
Muriatic Acid => Hydrochloric A	C ₄ H ₉ ON	100%	-	-	+	-	+	n	n	-	+	+	2
Natron => Sodium Bicarbonate	Ciu												
Nickel-II-Acetate	(CH ₃ COO) ₂ Ni	S	+	+	+	+	+	-	+	+	+	+	(2)
Nickel-II-Chloride	NiCl ₂	s	+	+	+	+	-	+	+	+	+	+	2
Nickel-II-Nitrate	Ni(NO ₃) ₂	s	+	+	+	+	+	+	+	+	+	+/0	2
Nickel-II-Sulphate	NiSO ₄	s	+	+	+	+	+	+	+	+	+	+/0	2
Nitrate of Lime => Calcium Nitra													
Nitric Acid	HNO ₃	99%	10%	10%*	50%	65%	50%	65%	10%	35%	50%	65%	1
Nitro Methane	CH ₃ NO ₂	100%	-	-	+	0	+	-	+/0	-	+	+	2
Nitro Propane	(CH ₃) ₂ CHNO ₂	100%	-	-	+	n	+	-	+/0	-	+	+	2
Nitro Toluene	C ₆ H ₄ NO ₂ CH ₃	100%	-	-	+	+	+	0	-	-	+	+	2
Octane	C ₈ H ₁₈	100%	0	+	+	+	+	+	-	-	+	+	1
Octanol	C ₈ H ₁₇ OH	100%	-	-	+	+	+	+	+	-	+	+	1
Octyl Cresol	C ₁ 5H ₂₄ O	100%	-	-	+	+	+	0	n	-	+	+	(1)
Oil => Engine Oils													
Oleum	H ₂ SO ₄ + SO ₃	S	n	-	-	-	+	+	-	+	-	+	2
Orthophosphoric Acid => Phosp							100/			,		,	4
Oxalic Acid	(COOH) ₂	S 4000/	+	+	+	+	10%	+	+	+/0	+	+/0	1
Pentane Pentanel Amyl Alashal	C ₅ H ₁₂	100%	+	+	+	+	+	+	-	-	+	+	1
Pentanol => Amyl Alcohol Perchloric Acid	HClO₄	70%	n	10%	10%	+	-	+	+/0	+	+	n	1
Perchloroethylene => Tetrachlor	7	7076	11	10 /0	10 /6	т	-	т	+ /0	т	т	11	•
Perhydrol => Hydrogen Peroxid	•												
Petroleum Ether	CnH _{2n+2}	100%	+	+/0	+	+	+	+	-		+	+	1
Phenole	C ₆ H ₅ OH	100%	-	-	+	+	+	+	-	+	+	+	2
Phenyl Ethyl Ether	C ₆ H ₅ OC ₂ H ₅	100%	-	-	+	n	+	-	-	-	+	+	2
Phenyl Hydrazine	C ₆ H5NHNH ₂	100%	-	-	0	+	+	0	-		0	+	2
Phosphoric Acid	H ₃ PO ₄	85%	50%	+	+	+	+	+	+	+	+	+	1
Phosphorous Oxychloride	POCI ₃	100%	-	-	+	+	n	+	+	n	+	+	1
Phosphorous Trichloride	PCI ₃	100%	-	-	+	+	+	0	+	+/o	+	+	1
Phthalic Acid	C ₆ H ₄ (COOH) ₂	S	+	+	+	+	+	+	+	+	+	+	1
Picric Acid	C ₆ H ₂ (NO ₃) ₃ OH	s	+	+	+	+	+	+	+	-	+	+	2
Piperidine	C ₅ H ₁₁ N	100%	-	-	n	n	+	-	-	-	n	+	2
Potash Alum => Potassium Alun	· .												
Potassium Acetate	CH₃COOK	s	+	+	+	+	+	+	+	+	+	+	1
Potassium Aluminium Sulphate		s	+	+	+	+	+	+	+	+	+	+	1
Potassium Bicarbonate	KHCO ₃	40%	+	+	+	+	+	+	+	+	+	+/0	1
Potassium Bifluoride	KHF ₂	s	n	+	+	+	+	+	+	+	+	+	1

1.1.2017

Chemical		Formula	Conc	PMMA	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed®	PE	2.4819	WPC
Potassium	Bisulphate	KHSO ₄	5%	+	+	+	+	+	+	+	+	+	+	1
Potassium	Bitartrate	KC ₄ H ₅ O ₆	s	+	+	+	+	+	+	+	+	+	+	1
Potassium	Borate	KBO ₂	S	+	+	+	+	+	+	+	+	+	+	(1)
Potassium	Bromate	KBrO ₃	s	+	+	+	+	+	+	+	+	+	+	2
Potassium	Bromide	KBr	s	+	+	+	+	10%	+	+	+	+	0,1	1
Potassium	Carbonate	K ₂ CO ₃	s	+	+	+	+	+	+	+	55%	+	+	1
Potassium	Chlorate	KCIO ₃	S	+	+	+	+	+	+	+	+	+	+	2
Potassium	Chloride	KCI	s	+	+	+	+	-	+	+	+	+	+/0	1
Potassium	Chromate	K ₂ CrO ₄	10%	+	+	+	+	+	+	+	+	+	+	3
Potassium	Chrome Sulphate	KCr(SO ₄) ₂	s	+	+	+	+	+	+	+	+	+	+	1
Potassium	Cyanate	KOCN	s	+	+	+	+	+	+	+	+	+	+	2
Potassium	Cyanide	KCN	s	+	+	+	+	5%	+	+	+	+	5%	3
Potassium	Cyanoferrate II	K ₄ Fe(CN) ₆	s	+	+	+	+	+	+	+	+	+	+	1
Potassium	Cyanoferrate III	K ₃ Fe(CN) ₆	s	+	+	+	+	+	+	+	+	+	+	1
Potassium	Dichromate	K ₂ Cr ₂ O ₇	S	+	+	+	+	25%	+	+	+	+	10%	3
Potassium	Fluoride	KF	s	+	+	+	+	+	+	+	+	+	+	1
Potassium	Hydroxyde	КОН	50%	+	+	+	+ (25 °C)	+	-	+	10%	+	+	1
Potassium	lodide	KI	s	+	+	+	+	+	+	+	+	+	+	1
Potassium		KNO ₃	s	+	+	+	+	+	+	+	+	+	+	1
Potassium	Perchlorate	KCIO ₄	s	+	+	+	+	n	+	+	+	+	+	1
Potassium	Permanganate	KMnO ₄	S	+	+	+	+	+	+	+	6%	+	+	2
	Persulphate	K ₂ S ₂ O ₈	s	+	+	+	+	+	+	+	+	+	+	1
Potassium	•	KH ₂ PO ₄	s	+	+	+	+	+	+	+	+	+	+	1
	Pyrochromate => Pota					•	•		•	•		•	•	
Potassium	•	K ₂ SO ₄	s	+	+	+	+	+	+	+	+	+	+	1
Potassium	•	K ₂ SO ₃	s	+	+	+	+	+	+	+	+	+	+	1
Propionic A	· ·	C ₂ H ₅ COOH	100%	0	+	+	+	+	+	+	+/0	+	+	1
Propionitrile		CH ₃ CH ₂ CN	100%	n	n	+	+	+	+	-	-	+	+	2
Propyl Ace		CH ₃ COOC ₃ H ₇	100%	-	-	+	+	+	-	+/0	-	+	+	1
Propylene		CH ₃ CHOHCH ₂ OH	100%	+	+	+	+	+	+	+	+	+	+	1
Prussic Aci	id => Hydrogen Cyani	de												
Pyridine		C ₅ H ₅ N	100%	-	-	0	-	+	-	-	0	+	+	2
Pyrrole		C ₄ H ₄ NH	100%	n	n	+	n	+	-	-	-	+	+	2
	riol => Copper Sulpha													
Salicylic Ac		HOC ₆ H₄COOH	S	+	+	+	+	+	+	+	+	+	+/0	1
	 Ammonium Chloride Potassium Nitrate 													
Silic Acid		SiO ₂ * x H ₂ O	s	+	+	+	+	+	+	+	+	+	+	1
Silver Brom	nide	AgBr	s	+	+	+	+	+/0	+	+	+	+	+	1
Silver Chlo		AgCl	s	+	+	+	+	-	+	+	+	+	+/0	1
Silver Nitra		AgNO ₃	s	+	+	+	+	+	+	+	+	+	+/0	3
	ie => Calcium Hydroxi	- 0		•	•	•	•	•	•	•	•	•	.,,	Ü
	odium Carbonate	ido												
Sodium Ac		NaCH ₃ COO	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Be		C ₆ H ₅ COONa	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Bio		NaHCO ₃	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Bis		NaHSO ₄	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Bis	•	NaHSO ₃	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Bo	•	NaBO ₂	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Bro		NaBrO ₃											+	3
Sodium Bro		NaBr	S	+	+	+	+	+	+	+	+	+		1
			S	+	+	+	+	+	+	+	+	+	+	
Sodium Ca		Na ₂ CO ₃	S	+	+	+	+	+/0	+	+	+	+	+	1
Sodium Ch		NaClO ₃	S	+	+	+	+	+	+	+	+	+	+	2
Sodium Ch		NaCl	S 0.40/	+	+	+	+	100/	+	+	+	+	+	1
Sodium Ch		NaClO ₂	24%	+	+	+	+	10%	+	+	+	+	10%	2
Sodium Ch		Na ₂ CrO ₄	s	+	+	+	+	+	+	+	+	+	+	3
Sodium Cy		NaCN	S	+	+	+	+	+	+	+	+	+	+	3
Sodium Did		Na ₂ Cr ₂ O ₇	S	+	+	+	+	+	+	+	+	+	+	3
Sodium Dit		Na ₂ S ₂ O ₄	S	+	10%	10%	+	+	n	n	+	10%	+/0	1
Sodium Flu		NaF	S	+	+	+	+	10%	+	+	+	+	+	1
-	drogen Sulphate => S													
Sodium Hy	droxide	NaOH	50%	+	+	+	+ (60%/ 25 °C)	+	-	+	30%	+	+	1
Sodium Hy	pochlorite	NaOCI + NaCI	12%	+	+	0	+	-	+	+	+	0	> 10%	2
Sodium loc	•	Nal	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Me	etaphosphate	(NaPO ₃) _n	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Nit		NaNO ₃	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Nit		NaNO ₂	s	+	+	+	+	+	+	+	+	+	+	2
Sodium Ox		Na ₂ C ₂ O ₄	s	+	+	+	+	+	+	+	+	+	+	1
Journal Ox			J			•					•			•

1.1.2017 7

Chemical	Formula	Conc	PMMA	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed®	PE	2.4819	WPC
Sodium Perborate	NaBO ₂ *H ₂ O ₂	S	+	+/0	+	+	+	+	+	+	+	+/0	1
Sodium Perchlorate	NaClO ₄	s	+	+	+	+	10%	+	+	+	+	10%	1
Sodium Peroxide	Na ₂ O ₂	S	+	+	+	+	+	+	+	n	-	+	1
Sodium Persulphate	Na ₂ S ₂ O ₈	s	n	+	+	+	+	+	+	+	+	+	1
Sodium Pyrosulphite	Na ₂ S ₂ O ₅	s	+	+	+	+	+	n	n	+	+	+	1
Sodium Salicylate	C ₆ H ₄ (OH)COONa	s	+	+/0	+	+	+	+	+	+	+	+	1
Sodium Silicate	Na ₂ SiO ₃	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Sulphate	Na ₂ SO ₄	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Sulphide	Na ₂ S	S	+	+	+	+	+	+	+	+	+	+	2
Sodium Sulphite	Na ₂ SO ₃	S	+	+	+	+	50%	+	+	+	+	50%	1
Sodium Tetraborate	Na ₂ B ₄ O ₇ * 10 H ₂ O	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Thiosulphate	$Na_2S_2O_3$	S	+	+	+	+	25%	+	+	+	+	25%	1
Sodium Tripolyphosphate	Na ₅ P ₃ O ₁₀	S	+	+	+	+	+	+/0	+	+	+	+	1
Starch	(C ₆ H ₁₀ O ₅) _n	S	+	+	+	+	+	+	n	+	+	+	1
Starch Gum	(-0-10-5/11	s	+	+	+	+	+	+	+	+	+	+	1
Styrene	C ₆ H ₅ CHCH ₂	100%	-	-	0	+	+	0	-	-	0	+	2
Sublimate => Mercury-II-Chloric		10070				•	•					•	_
Succinic Acid	C ₄ H ₆ O ₄	S	+	+	+	+	+	+	+	+	+	+	1
Sugar Syrup	-4· ·6~4	S	+	+	+	+	+	+	+	+	+	+	1
Sulphur Chloride => Disulphur [Dichloride	3	1			'			-	'		'	
Sulphuric Acid	H ₂ SO ₄	98%	30%	50%	85%	+	20%	+	+	30%	80%	+	1
Sulphuric Acid, furning> Oleur		30 /0	00 /0	JU /0	03/0	т	20 /0	Т	Т	30 /0	00 /6	т	
Sulphurous Acid	H ₂ SO ₃	S	+	+	+	+	10%	+	+		+	+	(1)
Sulphuryl Chloride	SO ₂ Cl ₂	100%	-	-	-	0	n	+	0	+	-	n	(1)
Tannic Acid		50%	+	+		+	+	+	+	+	+	+	1
Tartaric Acid	C ₇₆ H ₅₂ O ₄₆		50%		+				+/0				
	C ₄ H ₆ O ₆	S 1000/	50%	+	+	+	+	+	+/0	+	+	+	1
Tetrachloro Ethane	C ₂ H ₂ Cl ₄	100%			0	+	+	0		0	0	+	3
Tetrachloro Ethylene	C ₂ Cl ₄	100%	-	-	0	+	+	0	-	0	0	+	3
Tetrachloromethane => Carbon		1000/			_								1
Tetrahydro Furane	C ₄ H ₈ O	100%	-	-	0	-	+	-	-	-	0	+	1
Tetrahydro Naphthalene	C ₁₀ H ₁₂	100%	-	-	-	+	+	+	-	•	0	+	3
Tetralin => Tetrahydro Naphtha	iene												
THF => Tetrahydrofurane	0001	1000/											_
Thionyl Chloride	SOCI ₂	100%	-	-	-	+	n	+	+	+	-	n	1
Thiophene	C ₄ H ₄ S	100%	n	-	0	n	+	-	-	-	0	+	3
Tin-II-Chloride	SnCl ₂	s	+	0	+	+	-	+	+	+	+	+/0	1
Tin-II-Sulphate	SnSO ₄	S	n	+	+	+	+	+	+	+	+	+/0	(1)
Tin-IV-Chloride	SnCl ₄	S	n	+	+	+	-	+	+	+	+	+	1
Titanium Tetrachloride	TiCl ₄	100%	n	n	n	+	n	0	-	n	n	n	1
Toluene	C ₆ H ₅ CH ₃	100%	-	-	0	+	+	0	-	-	0	+	2
Toluene Diisocyanate	C ₇ H ₃ (NCO) ₂	100%	n	n	+	+	+	-	+/0	n	+	+	2
Tributyl Phosphate	(C ₄ H ₉) ₃ PO ₄	100%	n	-	+	+	+	-	+	+	+	+	1
Trichloro Ethane	CCI ₃ CH ₃	100%	-	-	0	+	+	+	-	0	0	+	3
Trichloro Ethylene	C ₂ HCl ₃	100%	-	-	0	+	+/0	0	-	0	0	+	3
Trichloro Methane => Chlorofor													
Trichloroacetaldehyde Hydrate	CCI ₃ CH(OH) ₂	S	-	-	0	-	+	0	0	n	+	+	2
Trichloroacetic Acid	CCI ₃ COOH	50%	-	+	+	+	-	-	0	+/0	+	+	1
Tricresyl Phosphate	$(C_7H_7)_3PO_4$	90%	-	-	+	n	+	0	+	+	+	+	2
Triethanol Amine	$N(C_2H_4OH)_3$	100%	+	0	+	n	+	-	+/0	0	+	+	1
Trilene => Trichloro Ethane													
Trioctyl Phosphate	(C ₈ H ₁₇) ₃ PO ₄	100%	n	-	+	+	+	0	+	+	+	+	2
Trisodium Phosphate	Na ₃ PO ₄	s	+	+	+	+	+	+	+	+	+	+	1
Urea	CO(NH ₂) ₂	S	+	+/0	+	+	+	+	+	20%	+	+	1
Vinyl Acetate	CH ₂ =CHOOCCH ₃	100%	-	-	+	+	+	n	n	+/o	+	+	2
Water Glass => Sodium Silicate													
Xylene	C ₆ H ₄ (CH ₃) ₂	100%	-	-	-	+	+	0	-	-	0	+	2
Zinc Acetate	(CH ₃ COO) ₂ Zn	s	+	+	+	+	+	-	+	+	+	+	1
Zinc Chloride	ZnCl ₂	s	+	+	+	+	-	+	+	+	+	n	1
Zirio Oriioriac													

¹⁾ Chlorine dioxide is capable of penetrating through PVDF without destroying it. This can lead to damage to PVDF-coated parts.

8 1.1.2017

Overview of the Resistance of Soft PVC Hoses (Guttasyn®) to the Most Common Chemicals

This data applies to standard conditions (20 °C, 1013 mbar).

+ = resistant
o = conditionally resistant
- = not resistant

The data is taken from relevant manufacturers' literature and supplemented by our own tests and experience. As the resistance of a material also depends on other factors, especially pressure and operating conditions etc, this list should merely be regarded as an initial guide and does not claim to offer any guarantees. Take into consideration the fact that conventional dosing agents are largely compounds, the corrosiveness of which cannot simply be calculated by adding together the corrosiveness of each individual component. In cases such as these the material compatibility data produced by the chemical manufacturer must be read as a matter of priority when selecting a material. Safety data sheets do not provide this information and cannot therefore replace application-specific documentation.

Corrosive agent	Concentration in %	Evaluation
Acetone	all	-
Acetylene tetrabromide	100	-
Alums of all kinds, aqueous	all	+
Aluminium salts, aqueous	all	+
Ammonium, aqueous	15	-
Ammonium, aqueous	saturated	-
Ammonium salts	all	+
Aniline	100	-
Benzene	100	-
Bisulphite, aqueous	40	+
Borax solution	all	+
Boric acid, aqueous	10	+
Bromine, vaporous and liquid		-
Hydrogen bromide	10	+
Butanol	100	+
Butyric acid, aqueous	20	+
Butyric acid, aqueous	conc.	-
Butyl acetate	100	-
Calcium chloride, aqueous	all	+
Chlorinated hydrocarbons	all	-
Chrome-alum, aqueous	all	+
Chromic acid, aqueous	50	-
Dextrin, aqueous	saturated	+
Diesel oils, compressed oils	100	0
Diethyl ether	100	-
Fertilizing manure salt, aqueous	all	+
Ferric chloride, aqueous	all	+
Glacial acetic acid	100	-
Acetic ester	100	-
Acetic acid, aqueous	10	+
Acetic acid	50	0
Acetic acid (wine vinegar)	30	0
Acetic acid anhydride	100	-
Ethanol	96	_
Ethyl acetate	100	_
Ethylene glycol	30	+
Formaldehyde, aqueous	30	
Difluorodichloromethane	100	0
	100	-
Glycerol	saturated	-
Glucose, aqueous		+
Halogens	all	-
Urea, aqueous	all	+
Caustic potash	15	+
Potassium bichromate, aqueous	saturated	+
Potassium persulphate, aqueous	saturated	+

2000 mH-

1.1.2017

Corrosive agent	Concentration in %	Evaluation
Creosote		-
Sodium chloride, aqueous	all	+
Carbonic acid	all	+
Copper sulphate, aqueous	all	+
Magnesium salts, aqueous	all	+
Methyl alcohol	100	+
Methylene chloride	100	-
Sodium hypochlorite	15	+
Sodium salts => sodium chloride		
Sodium hydroxide	aqueous	+
Oils => fats, diesel oil, Lubricating oil and similar		
Perchloric acid	all	0
Phenol, aqueous	all	0
Phosphoric acid, aqueous	100	-
Nitric acid, aqueous	25	+
Hydrochloric acid	15	+
Sulphur dioxide, gaseous	all	+
Carbon disulphide	100	-
Sulphuric acid	30	+
Hydrogen sulphide, gaseous	100	-
Silver nitrate	10	+
Tetrachloromethane	100	-
Ink		+
Toluene	100	-
Trichloroethylene	100	-
Hydrogen peroxide	to 10	+
Xylene	100	-
Zinc salts	all	+

10 1.1.2017

Product catalogue 2017

Order your personal copy. How you want it, when you want it.

Groundbreaking diversity: ProMinent 2017.

Our product catalogue is available in four individual volumes. We are offering you the following options so that you can request your catalogue of choice.

Metering pumps, components and metering systems

Motor-driven and process metering pumps for all capacity ranges

Measuring, control and sensor technology

Water treatment and water disinfection

You can find the ProMinent app for iPads in the iTunes App Store. www.prominent.com/app

You can find our individual catalogue volumes for download or online browsing at www.prominent.com/en/product-catalogue

Or request your own printed copy directly from us at www.prominent.com/en/catalogue-request

Do you need an overview of our entire product range? Then we would recommend our product overview. www.prominent.com/en/productoverview